These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37241631)

  • 1. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters.
    Qaseem Q; Ibrahim A
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nonlinear Impact-Driven Triboelectric Vibration Energy Harvester for Frequency Up-Conversion.
    Abumarar H; Ibrahim A
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static and Dynamic Analysis of a Bistable Frequency Up-Converter Piezoelectric Energy Harvester.
    Atmeh M; Ibrahim A; Ramini A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandwidth Broadening of Piezoelectric Energy Harvesters Using Arrays of a Proposed Piezoelectric Cantilever Structure.
    Salem MS; Ahmed S; Shaker A; Alshammari MT; Al-Dhlan KA; Alanazi A; Saeed A; Abouelatta M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.
    Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L
    Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Propelled Mechanism to Increase Range of Bistable Operation of a Piezoelectric Cantilever-Based Vibration Energy Harvester.
    Singh KA; Pathak M; Weber RJ; Kumar R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2184-2194. PubMed ID: 30106722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics.
    Qichang Z; Yang Y; Wei W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design guidelines of triboelectric nanogenerator for water wave energy harvesters.
    Ahmed A; Hassan I; Jiang T; Youssef K; Liu L; Hedaya M; Yazid TA; Zu J; Wang ZL
    Nanotechnology; 2017 May; 28(18):185403. PubMed ID: 28397707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Curve-Shaped Beam Bistable Piezoelectric Energy Harvester with Variable Potential Well: Modeling and Numerical Simulation.
    Chen X; Zhang X; Chen L; Guo Y; Zhu F
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of vibration energy harvesters through a two-stage design: power production at single frequency excitation.
    Fernando JS; Sun Q
    Rev Sci Instrum; 2013 Nov; 84(11):114704. PubMed ID: 24289422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buckled MEMS Beams for Energy Harvesting from Low Frequency Vibrations.
    Xu R; Akay H; Kim SG
    Research (Wash D C); 2019; 2019():1087946. PubMed ID: 31549042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions.
    Wang L; Zhu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Force-Assisted Nonlinear Three-Dimensional Wideband Energy Harvester Using Magnetostrictive/Piezoelectric Composite Transducers.
    Lin Z; Li H; Lv S; Zhang B; Wu Z; Yang J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.
    Zhang Y; Zheng R; Shimono K; Kaizuka T; Nakano K
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.