These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37241631)

  • 21. A Bistable Triboelectric Nanogenerator for Low-Grade Thermal Energy Harvesting and Solar Thermal Energy Conversion.
    Zeng Q; Luo Y; Zhang X; Tan L; Chen A; Tang Q; Yang H; Wang X
    Small; 2023 Aug; 19(34):e2301952. PubMed ID: 37086138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. All-in-One Piezo-Triboelectric Energy Harvester Module Based on Piezoceramic Nanofibers for Wearable Devices.
    Ji SH; Lee W; Yun JS
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18609-18616. PubMed ID: 32249574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Level Vibration for Single-Frequency and Multi-Frequency Excitation in Macro-Composite Piezoelectric (MFC) Energy Harvesters, Nonlinearity, and Higher Harmonics.
    Khazaee M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts.
    Rosso M; Nastro A; Baù M; Ferrari M; Ferrari V; Corigliano A; Ardito R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear Dynamic Analysis of Bistable Piezoelectric Energy Harvester with a New-Type Dynamic Amplifier.
    Man D; Xu G; Xu H; Xu D; Tang L
    Comput Intell Neurosci; 2022; 2022():7155628. PubMed ID: 35789613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth.
    Abramovich H; Har-Nes I
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30029562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Hybridized Triboelectric-Electromagnetic Water Wave Energy Harvester Based on a Magnetic Sphere.
    Wu Z; Guo H; Ding W; Wang YC; Zhang L; Wang ZL
    ACS Nano; 2019 Feb; 13(2):2349-2356. PubMed ID: 30681827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability.
    Kim W; Pyo S; Kim MO; Oh Y; Kwon DS; Kim J
    Nanotechnology; 2019 Jul; 30(27):275401. PubMed ID: 30836339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications.
    Bouhedma S; Hu S; Schütz A; Lange F; Bechtold T; Ouali M; Hohlfeld D
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet.
    Jackson N
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32429072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Smart Knee Implant Using Triboelectric Energy Harvesters.
    Ibrahim A; Jain M; Salman E; Willing R; Towfighian S
    Smart Mater Struct; 2019 Feb; 28(2):. PubMed ID: 31258261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field.
    Chen CD; Wu YH; Su PW
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester.
    Bouhedma S; Zheng Y; Lange F; Hohlfeld D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester.
    Roy S; Tiang JJ; Roslee MB; Ahmed MT; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.