These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 37241826)

  • 1. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death.
    Fujii J; Soma Y; Matsuda Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BODIPY-Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen.
    Teng KX; Chen WK; Niu LY; Fang WH; Cui G; Yang QZ
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19912-19920. PubMed ID: 34227724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy.
    Li B; Lin L; Lin H; Wilson BC
    J Biophotonics; 2016 Dec; 9(11-12):1314-1325. PubMed ID: 27136270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice.
    Aires-Fernandes M; Botelho Costa R; Rochetti do Amaral S; Mussagy CU; Santos-Ebinuma VC; Primo FL
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.
    Cheng Y; Cheng H; Jiang C; Qiu X; Wang K; Huan W; Yuan A; Wu J; Hu Y
    Nat Commun; 2015 Nov; 6():8785. PubMed ID: 26525216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Photosensitized Singlet Oxygen (
    Aerssens D; Cadoni E; Tack L; Madder A
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy.
    Xiao YF; Chen WC; Chen JX; Lu G; Tian S; Cui X; Zhang Z; Chen H; Wan Y; Li S; Lee CS
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5112-5121. PubMed ID: 35048696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote-Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxide-Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy.
    Kolemen S; Ozdemir T; Lee D; Kim GM; Karatas T; Yoon J; Akkaya EU
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3606-10. PubMed ID: 26845734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Mechanisms of Singlet Oxygen in Photodynamic Therapy.
    Przygoda M; Bartusik-Aebisher D; Dynarowicz K; Cieślar G; Kawczyk-Krupka A; Aebisher D
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsaturated fatty acid-tuned assembly of photosensitizers for enhanced photodynamic therapy via lipid peroxidation.
    Hou Y; Fu Q; Kuang Y; Li D; Sun Y; Qian Z; He Z; Sun J
    J Control Release; 2021 Jun; 334():213-223. PubMed ID: 33894305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to Unravel Pathways of Reactive Oxygen Species in the Photodynamic Inactivation of Bacteria.
    Gsponer NS; Durantini EN
    Methods Mol Biol; 2021; 2202():111-124. PubMed ID: 32857351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy.
    Zhou Z; Song J; Tian R; Yang Z; Yu G; Lin L; Zhang G; Fan W; Zhang F; Niu G; Nie L; Chen X
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6492-6496. PubMed ID: 28470979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygen-Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors.
    Dutta D; Wang J; Li X; Zhou Q; Ge Z
    Small; 2022 Sep; 18(37):e2202369. PubMed ID: 35971160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPR studies of the photodynamic properties of a novel potential photodynamic therapeutic agent: photogeneration of semiquinone radical anion and active oxygen species (O2*-, OH*, H2O2 and 1O2).
    Xu S; Zhang X; Chen S; Zhang M; Shen T
    Photochem Photobiol Sci; 2003 Aug; 2(8):871-6. PubMed ID: 14521225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells.
    Hananya N; Green O; Blau R; Satchi-Fainaro R; Shabat D
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11793-11796. PubMed ID: 28749072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct
    Blázquez-Castro A
    Redox Biol; 2017 Oct; 13():39-59. PubMed ID: 28570948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Infrared Chemiluminescent Probe for Real-Time Monitoring Singlet Oxygen in Cells and Mice Model.
    Yang M; Zhang J; Shabat D; Fan J; Peng X
    ACS Sens; 2020 Oct; 5(10):3158-3164. PubMed ID: 32933258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically Boosted Generation of Intracellular Reactive Oxygen Species toward Magneto-Photodynamic Therapy.
    Wu W; Guo X; Dai C; Zhou Z; Sun H; Zhong Y; Sheng H; Zhang C; Yao J
    J Phys Chem B; 2022 Mar; 126(9):1895-1903. PubMed ID: 35230847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dot-assisted luminescence of singlet oxygen: the generation dynamics but not the cumulative amount of singlet oxygen is responsible for the photodynamic therapy efficacy.
    Teng X; Li F; Lu C; Li B
    Nanoscale Horiz; 2020 Jun; 5(6):978-985. PubMed ID: 32314991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable NIR fluorimeter directly quantifies singlet oxygen generated by nanostructures for Photodynamic Therapy.
    Orsi D; Vaccari M; Baraldi A; Cristofolini L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120357. PubMed ID: 34534771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.