These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Timoshnikov VA; Kichigina LA; Selyutina OY; Polyakov NE; Kontoghiorghes GJ Molecules; 2021 Aug; 26(16):. PubMed ID: 34443652 [TBL] [Abstract][Full Text] [Related]
3. Metals, toxicity and oxidative stress. Valko M; Morris H; Cronin MT Curr Med Chem; 2005; 12(10):1161-208. PubMed ID: 15892631 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Timoshnikov VA; Selyutina OY; Polyakov NE; Didichenko V; Kontoghiorghes GJ Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163169 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxic effects of the lipophilic iron chelator omadine. Kontoghiorghes GJ; Piga A; Hoffbrand AV FEBS Lett; 1986 Aug; 204(2):208-12. PubMed ID: 3460820 [TBL] [Abstract][Full Text] [Related]
6. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Valko M; Jomova K; Rhodes CJ; Kuča K; Musílek K Arch Toxicol; 2016 Jan; 90(1):1-37. PubMed ID: 26343967 [TBL] [Abstract][Full Text] [Related]
7. Increased Free Radical Generation during the Interaction of a Quinone-Quinoline Chelator with Metal Ions and the Enhancing Effect of Light. Selyutina OY; Babenko SV; Slepneva IA; Polyakov NE; Kontoghiorghes GJ Pharmaceuticals (Basel); 2023 Aug; 16(8):. PubMed ID: 37631031 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. Simunkova M; Barbierikova Z; Jomova K; Hudecova L; Lauro P; Alwasel SH; Alhazza I; Rhodes CJ; Valko M Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562744 [TBL] [Abstract][Full Text] [Related]
9. Studies on cytotoxic and genotoxic effects of N-hydroxypyridine-2-thione (Omadine) in L5178Y mouse lymphoma cells. Möller M; Adam W; Saha-Möller CR; Stopper H Toxicol Lett; 2002 Nov; 136(1):77-84. PubMed ID: 12368059 [TBL] [Abstract][Full Text] [Related]
10. Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation. Sziráki I; Rauhala P; Koh KK; van Bergen P; Chiueh CC Neurotoxicology; 1999; 20(2-3):455-66. PubMed ID: 10385904 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant Properties and the Formation of Iron Coordination Complexes of 8-Hydroxyquinoline. Chobot V; Hadacek F; Bachmann G; Weckwerth W; Kubicova L Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544490 [TBL] [Abstract][Full Text] [Related]
12. The Interplay of Ascorbic Acid with Quinones-Chelators-Influence on Lipid Peroxidation: Insight into Anticancer Activity. Selyutina OY; Kononova PA; Koshman VE; Fedenok LG; Polyakov NE Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204258 [TBL] [Abstract][Full Text] [Related]
13. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone. Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486511 [TBL] [Abstract][Full Text] [Related]
14. The redox chemistry of the Alzheimer's disease amyloid beta peptide. Smith DG; Cappai R; Barnham KJ Biochim Biophys Acta; 2007 Aug; 1768(8):1976-90. PubMed ID: 17433250 [TBL] [Abstract][Full Text] [Related]
15. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255 [TBL] [Abstract][Full Text] [Related]
16. Aqueous infusions of Mediterranean herbs exhibit antioxidant activity towards iron promoted oxidation of phospholipids, linoleic acid, and deoxyribose. Matsingou TC; Kapsokefalou M; Salifoglou A Free Radic Res; 2001 Nov; 35(5):593-605. PubMed ID: 11767417 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone. Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643 [TBL] [Abstract][Full Text] [Related]
18. Zinc and the modulation of redox homeostasis. Oteiza PI Free Radic Biol Med; 2012 Nov; 53(9):1748-59. PubMed ID: 22960578 [TBL] [Abstract][Full Text] [Related]
19. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833 [TBL] [Abstract][Full Text] [Related]
20. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide. Suh J; Zhu BZ; Frei B Free Radic Biol Med; 2003 May; 34(10):1306-14. PubMed ID: 12726918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]