These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37241962)

  • 1. Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations.
    Chen WK; Wang SR; Liu XY; Fang WH; Cui G
    Molecules; 2023 May; 28(10):. PubMed ID: 37241962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for Nonadiabatic Excited-State Dynamics.
    Chen WK; Liu XY; Fang WH; Dral PO; Cui G
    J Phys Chem Lett; 2018 Dec; 9(23):6702-6708. PubMed ID: 30403870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate.
    Sit MK; Das S; Samanta K
    J Phys Chem A; 2023 Mar; 127(10):2376-2387. PubMed ID: 36856588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation.
    Hu D; Xie Y; Li X; Li L; Lan Z
    J Phys Chem Lett; 2018 Jun; 9(11):2725-2732. PubMed ID: 29732893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Machine Learning with the Multilayer Energy-Based Fragment Method for Excited States of Large Systems.
    Chen WK; Fang WH; Cui G
    J Phys Chem Lett; 2019 Dec; 10(24):7836-7841. PubMed ID: 31786927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance.
    Send R; Furche F
    J Chem Phys; 2010 Jan; 132(4):044107. PubMed ID: 20113019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward eliminating the electronic structure bottleneck in nonadiabatic dynamics on the fly: an algorithm to fit nonlocal, quasidiabatic, coupled electronic state Hamiltonians based on ab initio electronic structure data.
    Zhu X; Yarkony DR
    J Chem Phys; 2010 Mar; 132(10):104101. PubMed ID: 20232941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAC-TDDFT: Time-Dependent Density Functional Theory for Nonadiabatic Couplings.
    Wang Z; Wu C; Liu W
    Acc Chem Res; 2021 Sep; 54(17):3288-3297. PubMed ID: 34448566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning of double-valued nonadiabatic coupling vectors around conical intersections.
    Richardson JO
    J Chem Phys; 2023 Jan; 158(1):011102. PubMed ID: 36610946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic reaction of energetic molecules.
    Bhattacharya A; Guo Y; Bernstein ER
    Acc Chem Res; 2010 Dec; 43(12):1476-85. PubMed ID: 20931955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.
    Nelson T; Fernandez-Alberti S; Roitberg AE; Tretiak S
    Acc Chem Res; 2014 Apr; 47(4):1155-64. PubMed ID: 24673100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces.
    Zhang L; Zhang S; Owens A; Yurchenko SN; Dral PO
    Sci Data; 2022 Mar; 9(1):84. PubMed ID: 35277513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.
    Mahapatra S
    Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trajectory-based nonadiabatic molecular dynamics without calculating nonadiabatic coupling in the avoided crossing case: trans↔cis photoisomerization in azobenzene.
    Yu L; Xu C; Lei Y; Zhu C; Wen Z
    Phys Chem Chem Phys; 2014 Dec; 16(47):25883-95. PubMed ID: 25354307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.
    Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S
    Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin-orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH
    Wang Y; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2022 Jun; 24(24):15060-15067. PubMed ID: 35696936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up to a Sign. The Insidious Effects of Energetically Inaccessible Conical Intersections on Unimolecular Reactions.
    Xie C; Malbon CL; Guo H; Yarkony DR
    Acc Chem Res; 2019 Feb; 52(2):501-509. PubMed ID: 30707546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient approximate algorithm for nonadiabatic molecular dynamics.
    Hanasaki K; Kanno M; Niehaus TA; Kono H
    J Chem Phys; 2018 Dec; 149(24):244117. PubMed ID: 30599729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.