These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37242075)

  • 1. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires.
    Leshchenko ED; Dubrovskii VG
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of Vapor-Liquid-Solid III-V Ternary Nanowires Based on Group-III Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circumventing the Uncertainties of the Liquid Phase in the Compositional Control of VLS III-V Ternary Nanowires Based on Group V Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of Kinetic and Thermodynamic Factors in the Stationary Composition of Vapor-Liquid-Solid IIIV
    Dubrovskii VG; Leshchenko ED
    Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires.
    Mårtensson EK; Johansson J; Dick KA
    ACS Nanosci Au; 2022 Jun; 2(3):239-249. PubMed ID: 37101824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Thermodynamics and Kinetics in the Composition of Ternary III-V Nanowires.
    Leshchenko ED; Johansson J
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33353245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Catalyst-Free Growth of III-V Nanowires: Empirical and Rigorous Approaches.
    Dubrovskii VG
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modeling of interfacial abruptness in axial nanowire heterostructures.
    Leshchenko ED; Dubrovskii VG
    Nanotechnology; 2022 Nov; 34(6):. PubMed ID: 36356307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Consistent Model for the Compositional Profiles in Vapor-Liquid-Solid III-V Nanowire Heterostructures Based on Group V Interchange.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of MBE Growth of Nanowires on Adsorbing Substrates: The Role of the Shadowing Effect on the Diffusion Transport.
    Dubrovskii VG
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the Length and Radius of Catalyst-Free III-V Nanowires Grown by Selective Area Epitaxy.
    Dubrovskii VG
    ACS Omega; 2019 May; 4(5):8400-8405. PubMed ID: 31459928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn(1-x)Mg(x)Te nanowires grown by solid source molecular beam epitaxy.
    Janik E; Dynowska E; Dłużewski P; Kret S; Presz A; Zaleszczyk W; Szuszkiewicz W; Morhange JF; Petroutchik A; Maćkowski S; Wojtowicz T
    Nanotechnology; 2008 Sep; 19(36):365606. PubMed ID: 21828877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires.
    Ameruddin AS; Caroff P; Tan HH; Jagadish C; Dubrovskii VG
    Nanoscale; 2015 Oct; 7(39):16266-72. PubMed ID: 26376711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epitaxial Growth of GaAs Nanowires on Synthetic Mica by Metal-Organic Chemical Vapor Deposition.
    Saraswathy Vilasam AG; Prasanna PK; Yuan X; Azimi Z; Kremer F; Jagadish C; Chakraborty S; Tan HH
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3395-3403. PubMed ID: 34985872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Selective-Area and Vapor-Liquid-Solid Growth of InP Nanowire Arrays.
    Gao Q; Dubrovskii VG; Caroff P; Wong-Leung J; Li L; Guo Y; Fu L; Tan HH; Jagadish C
    Nano Lett; 2016 Jul; 16(7):4361-7. PubMed ID: 27253040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy.
    Zhang Y; Aagesen M; Holm JV; Jørgensen HI; Wu J; Liu H
    Nano Lett; 2013 Aug; 13(8):3897-902. PubMed ID: 23899047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed modeling of the epitaxial growth of GaAs nanowires.
    De Jong E; LaPierre RR; Wen JZ
    Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.