These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Understanding the Effect of Catalyst Size on the Epitaxial Growth of Hierarchical Structured InGaP Nanowires. Gao H; Sun Q; Sun W; Tan HH; Jagadish C; Zou J Nano Lett; 2019 Nov; 19(11):8262-8269. PubMed ID: 31661618 [TBL] [Abstract][Full Text] [Related]
23. Dynamics of Monolayer Growth in Vapor-Liquid-Solid GaAs Nanowires Based on Surface Energy Minimization. Hijazi H; Dubrovskii VG Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206789 [TBL] [Abstract][Full Text] [Related]
24. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium. Tian Z; Yuan X; Zhang Z; Jia W; Zhou J; Huang H; Meng J; He J; Du Y Nanoscale Res Lett; 2021 Mar; 16(1):49. PubMed ID: 33743092 [TBL] [Abstract][Full Text] [Related]
25. Mono- and polynucleation, atomistic growth, and crystal phase of III-V nanowires under varying group V flow. Dubrovskii VG J Chem Phys; 2015 May; 142(20):204702. PubMed ID: 26026456 [TBL] [Abstract][Full Text] [Related]
26. Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires. Dubrovskii VG; Hijazi H Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349326 [TBL] [Abstract][Full Text] [Related]
27. Recent advances in Sb-based III-V nanowires. Gao Z; Sun J; Han M; Yin Y; Gu Y; Yang ZX; Zeng H Nanotechnology; 2019 May; 30(21):212002. PubMed ID: 30708362 [TBL] [Abstract][Full Text] [Related]
28. Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition. Lim SK; Tambe MJ; Brewster MM; Gradecak S Nano Lett; 2008 May; 8(5):1386-92. PubMed ID: 18386937 [TBL] [Abstract][Full Text] [Related]
29. Assembling your nanowire: an overview of composition tuning in ternary III-V nanowires. Ghasemi M; Leshchenko ED; Johansson J Nanotechnology; 2021 Feb; 32(7):072001. PubMed ID: 33091889 [TBL] [Abstract][Full Text] [Related]
30. Self-catalysis: a contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition. Noor Mohammad S J Chem Phys; 2006 Sep; 125(9):094705. PubMed ID: 16965103 [TBL] [Abstract][Full Text] [Related]
32. Catalyst-free growth of InAs nanowires on Si (111) by CBE. Gomes UP; Ercolani D; Sibirev NV; Gemmi M; Dubrovskii VG; Beltram F; Sorba L Nanotechnology; 2015 Oct; 26(41):415604. PubMed ID: 26404459 [TBL] [Abstract][Full Text] [Related]
33. In situ TEM observation of the vapor-solid-solid growth of <001[combining macron]> InAs nanowires. Sun Q; Pan D; Li M; Zhao J; Chen P; Lu W; Zou J Nanoscale; 2020 Jun; 12(21):11711-11717. PubMed ID: 32452500 [TBL] [Abstract][Full Text] [Related]
34. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis. Zi Y; Suslov S; Yang C Nano Lett; 2017 Feb; 17(2):1167-1173. PubMed ID: 28103043 [TBL] [Abstract][Full Text] [Related]
35. Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity. Zhou C; Zhang XT; Zheng K; Chen PP; Lu W; Zou J Nano Lett; 2017 Dec; 17(12):7824-7830. PubMed ID: 29112426 [TBL] [Abstract][Full Text] [Related]
36. Growth kinetics of Ga Dagytė V; Heurlin M; Zeng X; Borgström MT Nanotechnology; 2018 Sep; 29(39):394001. PubMed ID: 29979150 [TBL] [Abstract][Full Text] [Related]
37. Direct Synthesis of Oxynitride Nanowires through Atmospheric Pressure Chemical Vapor Deposition. Adeli B; Taghipour F Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33327442 [TBL] [Abstract][Full Text] [Related]
40. Growth of long III-As NWs by hydride vapor phase epitaxy. Gil E; Andre Y Nanotechnology; 2021 Apr; 32(16):162002. PubMed ID: 33434903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]