These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37242097)

  • 1. Mechanobiological Analysis of Nanoparticle Toxicity.
    Ketebo AA; Din SU; Lee G; Park S
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Nanotoxicity with Integrated Omics and Mechanobiology.
    Shin TH; Nithiyanandam S; Lee DY; Kwon DH; Hwang JS; Kim SG; Jang YE; Basith S; Park S; Mo JS; Lee G
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses.
    Sohrabi Kashani A; Packirisamy M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Nanoparticle Adsorption on Polydimethylsiloxane-Based Microchannels.
    Hirama H; Otahara R; Kano S; Hayase M; Mekaru H
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of metal-based nanoparticles: Challenges in the nano era.
    Zhang N; Xiong G; Liu Z
    Front Bioeng Biotechnol; 2022; 10():1001572. PubMed ID: 36619393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties.
    Sukhanova A; Bozrova S; Sokolov P; Berestovoy M; Karaulov A; Nabiev I
    Nanoscale Res Lett; 2018 Feb; 13(1):44. PubMed ID: 29417375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles.
    Cui L; Wang X; Sun B; Xia T; Hu S
    ACS Nano; 2019 Nov; 13(11):13065-13082. PubMed ID: 31682760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation.
    Sharma S; Shree B; Aditika ; Sharma A; Irfan M; Kumar P
    Environ Res; 2022 Sep; 212(Pt A):113168. PubMed ID: 35346658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicological assessment of nanoparticle interactions with the pulmonary system.
    Osman NM; Sexton DW; Saleem IY
    Nanotoxicology; 2020 Feb; 14(1):21-58. PubMed ID: 31502904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards
    Tirumala MG; Anchi P; Raja S; Rachamalla M; Godugu C
    Front Pharmacol; 2021; 12():612659. PubMed ID: 34566630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing mechanobiological role of filamin A in migration and invasion of human U87 glioblastoma cells using submicron soft pillars.
    Ketebo AA; Park C; Kim J; Jun M; Park S
    Nano Converg; 2021 Jul; 8(1):19. PubMed ID: 34213679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biologically effective dose in inhalation nanotoxicology.
    Donaldson K; Schinwald A; Murphy F; Cho WS; Duffin R; Tran L; Poland C
    Acc Chem Res; 2013 Mar; 46(3):723-32. PubMed ID: 23003923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time in vivo imaging of size-dependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy.
    Browning LM; Huang T; Xu XH
    Interface Focus; 2013 Jun; 3(3):20120098. PubMed ID: 24427540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?
    Panariti A; Miserocchi G; Rivolta I
    Nanotechnol Sci Appl; 2012 Sep; 5():87-100. PubMed ID: 24198499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications.
    Li L; Xing H; Zhang J; Lu Y
    Acc Chem Res; 2019 Sep; 52(9):2415-2426. PubMed ID: 31411853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanobiology in cardiac mechanics.
    Sheetz M
    Biophys Rev; 2021 Oct; 13(5):583-585. PubMed ID: 34765042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Toxicity of Polystyrene-Based Nanoparticles in
    Ozbek O; O Ulgen K; Ileri Ercan N
    Chem Res Toxicol; 2021 Apr; 34(4):1055-1068. PubMed ID: 33710856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.