BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37242108)

  • 1. Effect of High-Energy Ball Milling, Capping Agents and Alkalizer on Capacitance of Nanostructured FeOOH Anodes.
    Zhang C; Zhitomirsky I
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal Processing of Mn
    Yang W; Zhitomirsky I
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.
    Owusu KA; Qu L; Li J; Wang Z; Zhao K; Yang C; Hercule KM; Lin C; Shi C; Wei Q; Zhou L; Mai L
    Nat Commun; 2017 Mar; 8():14264. PubMed ID: 28262797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Rhamnolipids as Dispersing Agents for the Fabrication of Composite MnO
    Yang W; Liang W; Zhitomirsky I
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersant Molecules with Functional Catechol Groups for Supercapacitor Fabrication.
    Rorabeck K; Zhitomirsky I
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33808543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Octanohydroxamic Acid for Salting out Liquid-Liquid Extraction of Materials for Energy Storage in Supercapacitors.
    Rorabeck K; Zhitomirsky I
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33435538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite Fe
    Liang W; Zhitomirsky I
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications.
    Gong X; Li S; Lee PS
    Nanoscale; 2017 Aug; 9(30):10794-10801. PubMed ID: 28726969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance.
    Shi K; Zhitomirsky I
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13161-70. PubMed ID: 24255939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Electrochemical Performance of Sugarcane Bagasse-Derived Activated Carbon via a High-Energy Ball Milling Treatment.
    Wannasen L; Chanlek N; Siriroj S; Maensiri S; Swatsitang E; Pinitsoontorn S
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of FeOx-Decorated on Ethanol Pretreated Ti Grids for Asymmetric Supercapacitors.
    Li KL; Zhou Z
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4136-4141. PubMed ID: 30764982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance.
    Wang Y; Xiao J; Zhang T; Ouyang L; Yuan S
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45670-45678. PubMed ID: 34538050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercapacitor Performance of Magnetite Nanoparticles Enhanced by a Catecholate Dispersant: Experiment and Theory.
    Boucher C; Rubel O; Zhitomirsky I
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyoxometalates-Based Metal-Organic Frameworks Made by Electrodeposition and Carbonization Methods as Cathodes and Anodes for Asymmetric Supercapacitors.
    Liu YZ; Yao W; Gan HM; Sun CY; Su ZM; Wang XL
    Chemistry; 2019 Dec; 25(72):16617-16624. PubMed ID: 31631411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors.
    Chen YC; Lin YG; Hsu YK; Yen SC; Chen KH; Chen LC
    Small; 2014 Sep; 10(18):3803-10. PubMed ID: 24850774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance.
    Wu C; Pei Z; Lv M; Huang D; Wang Y; Yuan S
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Mn
    Ata MS; Milne J; Zhitomirsky I
    J Colloid Interface Sci; 2018 Feb; 512():758-766. PubMed ID: 29112926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors.
    Wei Y; Ding R; Zhang C; Lv B; Wang Y; Chen C; Wang X; Xu J; Yang Y; Li Y
    J Colloid Interface Sci; 2017 Oct; 504():593-602. PubMed ID: 28609743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors.
    Wang T; Li K; Le Q; Zhu S; Guo X; Jiang D; Zhang Y
    J Colloid Interface Sci; 2021 Jul; 594():812-823. PubMed ID: 33794403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.