BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 37242919)

  • 1. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering.
    Hakim Khalili M; Zhang R; Wilson S; Goel S; Impey SA; Aria AI
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoindentation Response of 3D Printed PEGDA Hydrogels in a Hydrated Environment.
    Khalili MH; Williams CJ; Micallef C; Duarte-Martinez F; Afsar A; Zhang R; Wilson S; Dossi E; Impey SA; Goel S; Aria AI
    ACS Appl Polym Mater; 2023 Feb; 5(2):1180-1190. PubMed ID: 36817334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Behavior of 3D Printed Poly(ethylene glycol) Diacrylate Hydrogels in Hydrated Conditions Investigated Using Atomic Force Microscopy.
    Hakim Khalili M; Panchal V; Dulebo A; Hawi S; Zhang R; Wilson S; Dossi E; Goel S; Impey SA; Aria AI
    ACS Appl Polym Mater; 2023 Apr; 5(4):3034-3042. PubMed ID: 37090424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
    Testore D; Zoso A; Kortaberria G; Sangermano M; Chiono V
    Front Bioeng Biotechnol; 2022; 10():897575. PubMed ID: 35814009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H
    Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Biomedical Applications of 3D-Printed Hydrogels.
    Barcena AJR; Dhal K; Patel P; Ravi P; Kundu S; Tappa K
    Gels; 2023 Dec; 10(1):. PubMed ID: 38275845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering.
    Yuan Y; Tyson C; Szyniec A; Agro S; Tavakol TN; Harmon A; Lampkins D; Pearson L; Dumas JE; Taite LJ
    Gels; 2024 Jan; 10(2):. PubMed ID: 38391438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering biologically extensible hydrogels using photolithographic printing.
    Mehta SM; Jin T; Stanciulescu I; Grande-Allen KJ
    Acta Biomater; 2018 Jul; 75():52-62. PubMed ID: 29803005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering.
    Beamish JA; Zhu J; Kottke-Marchant K; Marchant RE
    J Biomed Mater Res A; 2010 Feb; 92(2):441-50. PubMed ID: 19191313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application.
    Della Sala F; Biondi M; Guarnieri D; Borzacchiello A; Ambrosio L; Mayol L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103885. PubMed ID: 32957192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured
    Vaupel S; Mau R; Kara S; Seitz H; Kragl U; Meyer J
    J Mater Chem B; 2023 Jul; 11(28):6547-6559. PubMed ID: 37325953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering.
    Son KH; Lee JW
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printability Assessment of Poly(octamethylene maleate (anhydride) citrate) and Poly(ethylene glycol) Diacrylate Copolymers for Biomedical Applications.
    Wales DJ; Keshavarz M; Howe C; Yeatman E
    ACS Appl Polym Mater; 2022 Aug; 4(8):5457-5470. PubMed ID: 35991303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Standing 3D-Printed PEGDA-PANIs Electroconductive Hydrogel Composites for pH Monitoring.
    Carcione R; Pescosolido F; Montaina L; Toschi F; Orlanducci S; Tamburri E; Battistoni S
    Gels; 2023 Sep; 9(10):. PubMed ID: 37888357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q
    J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication Parameter-Dependent Physico-Chemical Properties of Thiolated Gelatin/PEGDA Interpenetrating Network Hydrogels.
    Kim S; Choi Y; Lee W; Kim K
    Tissue Eng Regen Med; 2022 Apr; 19(2):309-319. PubMed ID: 34905183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.
    Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P
    ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.