BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 37242919)

  • 21. Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering.
    Qin X; He R; Chen H; Fu D; Peng Y; Meng S; Chen C; Yang L
    J Biomater Sci Polym Ed; 2021 Jun; 32(8):1057-1071. PubMed ID: 33685369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules.
    Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T
    Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering.
    Ravi S; Chokkakula LPP; Giri PS; Korra G; Dey SR; Rath SN
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):19921-19936. PubMed ID: 37058130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is 3D Printing Promising for Osteochondral Tissue Regeneration?
    Ege D; Hasirci V
    ACS Appl Bio Mater; 2023 Apr; 6(4):1431-1444. PubMed ID: 36943415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.
    Madaghiele M; Marotta F; Demitri C; Montagna F; Maffezzoli A; Sannino A
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):183-92. PubMed ID: 24700267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Living Material Bioreactors with Tunable Mechanical Properties using Vat Photopolymerization.
    Altin-Yavuzarslan G; Sadaba N; Brooks SM; Alper HS; Nelson A
    Small; 2024 May; 20(22):e2306564. PubMed ID: 38105580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In depth examination of impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus.
    Munoz-Pinto DJ; Samavedi S; Grigoryan B; Hahn MS
    Polymer (Guildf); 2015 Oct; 77():227-238. PubMed ID: 29332957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.
    Cui X; Gao G; Yonezawa T; Dai G
    J Vis Exp; 2014 Jun; (88):. PubMed ID: 24961492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
    Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in photo-crosslinkable hydrogels for biomedical applications.
    Choi JR; Yong KW; Choi JY; Cowie AC
    Biotechniques; 2019 Jan; 66(1):40-53. PubMed ID: 30730212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes.
    Montero A; Atienza C; Elvira C; Jorcano JL; Velasco D
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112352. PubMed ID: 34474900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatibility and thermodynamic properties of PEGDA and two of its copolymer.
    Rekowska N; Teske M; Arbeiter D; Brietzke A; Konasch J; Riess A; Mau R; Eickner T; Seitz H; Grabow N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1093-1096. PubMed ID: 31946084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Reinforcement of Cell-Laden Hydrogels with Microfabricated Three Dimensional Scaffolds.
    Cha C; Soman P; Zhu W; Nikkhah M; Camci-Unal G; Chen S; Khademhosseini A
    Biomater Sci; 2014 May; 2(5):703-709. PubMed ID: 24778793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling Fluid Diffusion and Release through Mixed-Molecular-Weight Poly(ethylene) Glycol Diacrylate (PEGDA) Hydrogels.
    O'Donnell K; Boyd A; Meenan BJ
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Biomed Microdevices; 2016 Dec; 18(6):107. PubMed ID: 27830453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of bioactive photocrosslinkable fibrous hydrogels.
    Stephens-Altus JS; Sundelacruz P; Rowland ML; West JL
    J Biomed Mater Res A; 2011 Aug; 98(2):167-76. PubMed ID: 21548066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation.
    Şener Raman T; Kuehnert M; Daikos O; Scherzer T; Krömmelbein C; Mayr SG; Abel B; Schulze A
    Front Chem; 2022; 10():1094981. PubMed ID: 36700077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.