BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37242933)

  • 1. Study on Efficient Degradation of Waste PU Foam.
    Gu X; Wang X; Guo X; Liu S; Lou C; Liu Y
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study and Characterization of Regenerated Hard Foam Prepared by Polyol Hydrolysis of Waste Polyurethane.
    Gu X; Wang X; Guo X; Liu S; Li Q; Liu Y
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Factors Influencing the Efficiency of Catalysts Used in Waste PU Degradation.
    Gu X; Wang X; Wang T; Zhu Y; Guo X; Liu S; Zhu S; Liu Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Aerogel-Modified Recycled Polyurethane Nanocomposites.
    Gu X; Zhu S; Liu S; Liu Y
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Influencing Factors of the Efficient Degradation of Waste Polyurethane and Its Scheme Optimization.
    Gu X; Zhu S; Liu S; Liu Y
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations.
    Kiss G; Rusu G; Peter F; Tănase I; Bandur G
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of Flexible Polyurethane Foam by Split-Phase Alcoholysis: Identification of Additives and Alcoholyzing Agents to Reach Higher Efficiencies.
    Vanbergen T; Verlent I; De Geeter J; Haelterman B; Claes L; De Vos D
    ChemSusChem; 2020 Aug; 13(15):3835-3843. PubMed ID: 32469159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolysis recycling of rigid waste polyurethane foam from refrigerators.
    Zhu P; Cao ZB; Chen Y; Zhang XJ; Qian GR; Chu YL; Zhou M
    Environ Technol; 2014; 35(21-24):2676-84. PubMed ID: 25176301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Green Degradation Process of Polyurethane Foam Based on Integral Utilization and Performance of Recycled Polyurethane Oil-Absorbing Foam.
    Peng S; Gong D; Zhou Y; Zhang C; Li Y; Zhang C; Sheng Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry.
    Kowalczyk Ł; Korol J; Chmielnicki B; Laska A; Chuchala D; Hejna A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties and Thermal Conductivity of Thermal Insulation Board Containing Recycled Thermosetting Polyurethane and Thermoplastic.
    He P; Ruan H; Wang C; Lu H
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Recycling of Polyurethane Waste via a Microwave-Assisted Glycolysis Process.
    Donadini R; Boaretti C; Lorenzetti A; Roso M; Penzo D; Dal Lago E; Modesti M
    ACS Omega; 2023 Feb; 8(5):4655-4666. PubMed ID: 36777588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanochemistry: An Efficient Way to Recycle Thermoset Polyurethanes.
    He P; Lu H; Ruan H; Wang C; Zhang Q; Huang Z; Liu J
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Bio-Based Polyol from Coconut Fatty Acid Distillate (CFAD) and Crude Glycerol for Rigid Polyurethane Foam Applications.
    Salcedo MLD; Omisol CJM; Maputi AO; Estrada DJE; Aguinid BJM; Asequia DMA; Erjeno DJD; Apostol G; Siy H; Malaluan RM; Alguno AC; Dumancas GG; Lubguban AA
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol.
    Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams.
    Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-evolutionary recycling of flame-retardant polyurethane foam enabled by controllable catalytic cleavage.
    Fang DX; Chen MJ; Zeng FR; Guo SQ; He L; Liu BW; Huang SC; Zhao HB; Wang YZ
    Mater Horiz; 2024 May; ():. PubMed ID: 38742392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.