BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37242985)

  • 1. Soft Wearable Piezoresistive Sensors Based on Natural Rubber Fabricated with a Customized Vat-Based Additive Manufacturing Process.
    Georgopoulou A; Srisawadi S; Wiroonpochit P; Clemens F
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect.
    Tang Z; Jia S; Zhou C; Li B
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28669-28680. PubMed ID: 32466639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Fabrication of 3D Porous Sponges Coated with Synergistic Carbon Black/Multiwalled Carbon Nanotubes for Tactile Sensing Applications.
    Al-Handarish Y; Omisore OM; Duan W; Chen J; Zebang L; Akinyemi TO; Du W; Li H; Wang L
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies.
    Zhong W; Jiang H; Jia K; Ding X; Yadav A; Ke Y; Li M; Chen Y; Wang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37764-37773. PubMed ID: 32814398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges.
    Ding Y; Xu T; Onyilagha O; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6685-6704. PubMed ID: 30689335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites.
    Christ JF; Aliheidari N; Pötschke P; Ameli A
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30959995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
    Fekiri C; Kim HC; Lee IH
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics.
    Bang J; Chun B; Lim J; Han Y; So H
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34120-34131. PubMed ID: 37431634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitive-piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range.
    Shen Z; Yang C; Yao C; Liu Z; Huang X; Liu Z; Mo J; Xu H; He G; Tao J; Xie X; Hang T; Chen HJ; Liu F
    Mater Horiz; 2023 Feb; 10(2):499-511. PubMed ID: 36412496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges.
    Jing M; Zhou J; Zhang P; Hou D; Shen J; Tian J; Chen W
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55119-55129. PubMed ID: 36451588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a Soft Robotic Gripper With Integrated Strain Sensing Elements Using Multi-Material Additive Manufacturing.
    Georgopoulou A; Vanderborght B; Clemens F
    Front Robot AI; 2021; 8():615991. PubMed ID: 35372524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical Stability and Piezoresistive Sensing Performance of High Strain-Range Ultra-Stretchable CNT-Embedded Sensors.
    Khalid HR; Jang D; Abbas N; Haider MS; Bukhari SNA; Mirza CR; Elboughdiri N; Ahmad F
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network.
    Yu R; Xia T; Wu B; Yuan J; Ma L; Cheng GJ; Liu F
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35291-35299. PubMed ID: 32640161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data Glove Using Soft and Stretchable Piezoresistive Sensors.
    Aw K; Budd J; Wilshaw-Sparkes T
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Based Piezoresistive Polymer Nanocomposites by Extrusion Additive Manufacturing: Process, Material Design, and Current Progress.
    Banks JD; Emami A
    3D Print Addit Manuf; 2024 Apr; 11(2):e548-e571. PubMed ID: 38689914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Programmable Design of Large-Area Piezoresistive Textile Sensors Using Manufacturing by Jacquard Processing.
    Kim S; Truong T; Jang J; Kim J
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Electrical viscosity' of piezoresistive sensors: Novel signal processing method, assessment of manufacturing quality, and proposal of an industrial standard.
    Fuss FK; Tan AM; Weizman Y
    Biosens Bioelectron; 2019 Sep; 141():111408. PubMed ID: 31195205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDMS Sponges with Embedded Carbon Nanotubes as Piezoresistive Sensors for Human Motion Detection.
    Herren B; Webster V; Davidson E; Saha MC; Altan MC; Liu Y
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocurable Polymer-Based 3D Printing: Advanced Flexible Strain Sensors for Human Kinematics Monitoring.
    Billings C; Siddique R; Liu Y
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembly of Multiwalled Carbon Nanotubes on a Silicone Rubber Foam Skeleton for Durable Piezoresistive Sensors.
    Zhang Y; Zhao Z; Yu R; Yang X; Zhao X; Huang W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44248-44258. PubMed ID: 37672639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.