These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37243588)

  • 1. Cortex-wide neural dynamics predict behavioral states and provide a neural basis for resting-state dynamic functional connectivity.
    Shahsavarani S; Thibodeaux DN; Xu W; Kim SH; Lodgher F; Nwokeabia C; Cambareri M; Yagielski AJ; Zhao HT; Handwerker DA; Gonzalez-Castillo J; Bandettini PA; Hillman EMC
    Cell Rep; 2023 Jun; 42(6):112527. PubMed ID: 37243588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.
    Ma Y; Shaik MA; Kozberg MG; Kim SH; Portes JP; Timerman D; Hillman EM
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8463-E8471. PubMed ID: 27974609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.
    Shmuel A; Leopold DA
    Hum Brain Mapp; 2008 Jul; 29(7):751-61. PubMed ID: 18465799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
    Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N
    J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound.
    Hikishima K; Tsurugizawa T; Kasahara K; Takagi R; Yoshinaka K; Nitta N
    Neuroimage; 2023 Oct; 279():120297. PubMed ID: 37500027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates.
    Chen LM; Yang PF; Wang F; Mishra A; Shi Z; Wu R; Wu TL; Wilson GH; Ding Z; Gore JC
    Magn Reson Imaging; 2017 Jun; 39():71-81. PubMed ID: 28161319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques.
    Hutchison RM; Womelsdorf T; Gati JS; Everling S; Menon RS
    Hum Brain Mapp; 2013 Sep; 34(9):2154-77. PubMed ID: 22438275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing.
    Bailes SM; Gomez DEP; Setzer B; Lewis LD
    Elife; 2023 Aug; 12():. PubMed ID: 37565644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS.
    Sasai S; Homae F; Watanabe H; Taga G
    Neuroimage; 2011 May; 56(1):252-7. PubMed ID: 21211570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 13. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity.
    Weaver KE; Wander JD; Ko AL; Casimo K; Grabowski TJ; Ojemann JG; Darvas F
    Neuroimage; 2016 Mar; 128():238-251. PubMed ID: 26747745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of local network oscillations in resting-state functional connectivity.
    Cabral J; Hugues E; Sporns O; Deco G
    Neuroimage; 2011 Jul; 57(1):130-139. PubMed ID: 21511044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data.
    Khan AF; Zhang F; Shou G; Yuan H; Ding L
    Neuroimage; 2022 Oct; 260():119460. PubMed ID: 35868615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Stability of BOLD fMRI Correlations.
    Laumann TO; Snyder AZ; Mitra A; Gordon EM; Gratton C; Adeyemo B; Gilmore AW; Nelson SM; Berg JJ; Greene DJ; McCarthy JE; Tagliazucchi E; Laufs H; Schlaggar BL; Dosenbach NUF; Petersen SE
    Cereb Cortex; 2017 Oct; 27(10):4719-4732. PubMed ID: 27591147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.
    Wu L; Eichele T; Calhoun VD
    Neuroimage; 2010 Oct; 52(4):1252-60. PubMed ID: 20510374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.