These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37243603)

  • 1. A protocol to execute a lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria.
    Fande S; Srikanth S; U S J; Amreen K; Dubey SK; Javed A; Goel S
    STAR Protoc; 2023 May; 4(2):102327. PubMed ID: 37243603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria.
    Srikanth S; Jayapiriya US; Dubey SK; Javed A; Goel S
    iScience; 2022 Nov; 25(11):105388. PubMed ID: 36353723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic electrochemical device for real-time culturing and interference-free detection of Escherichia coli.
    Fande S; Amreen K; Sriram D; Goel S
    Anal Chim Acta; 2023 Jan; 1237():340591. PubMed ID: 36442949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications.
    Srikanth S; Dudala S; Jayapiriya US; Mohan JM; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Sci Rep; 2021 May; 11(1):9750. PubMed ID: 33963200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol to develop a microfluidic human corneal barrier-on-a-chip to evaluate the corneal epithelial wound repair process.
    Yu Z; Hao R; Chen X; Ma L; Zhang Y; Yang H
    STAR Protoc; 2023 Mar; 4(1):102122. PubMed ID: 36861830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic system for in vitro epithelial folding and calcium waves induction.
    Brun-Cosme-Bruny M; Pernet L; Blonski S; Zaremba D; Fraboulet S; Dolega ME
    STAR Protoc; 2022 Dec; 3(4):101683. PubMed ID: 36116075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Device Directly Fabricated on Screen-Printed Electrodes for Ultrasensitive Electrochemical Sensing of PSA.
    Chen S; Wang Z; Cui X; Jiang L; Zhi Y; Ding X; Nie Z; Zhou P; Cui D
    Nanoscale Res Lett; 2019 Feb; 14(1):71. PubMed ID: 30820698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Antimicrobial Susceptibility Testing of
    Ma L; Petersen M; Lu X
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32111591
    [No Abstract]   [Full Text] [Related]  

  • 10. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection.
    Martín A; Kim J; Kurniawan JF; Sempionatto JR; Moreto JR; Tang G; Campbell AS; Shin A; Lee MY; Liu X; Wang J
    ACS Sens; 2017 Dec; 2(12):1860-1868. PubMed ID: 29152973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.
    Esquivel JP; Castellarnau M; Senn T; Löchel B; Samitier J; Sabaté N
    Lab Chip; 2012 Jan; 12(1):74-9. PubMed ID: 22072241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide-Poly(dimethylsiloxane)-Based Lab-on-a-Chip Platform for Heavy-Metals Preconcentration and Electrochemical Detection.
    Chałupniak A; Merkoçi A
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44766-44775. PubMed ID: 29192752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.
    Esquivel JP; Colomer-Farrarons J; Castellarnau M; Salleras M; del Campo FJ; Samitier J; Miribel-Català P; Sabaté N
    Lab Chip; 2012 Nov; 12(21):4232-5. PubMed ID: 22968667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized Paper-Supported 3D Cell-Based Electrochemical Sensor for Bacterial Lipopolysaccharide Detection.
    Jiang H; Yang J; Wan K; Jiang D; Jin C
    ACS Sens; 2020 May; 5(5):1325-1335. PubMed ID: 32274922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial Graphene Sensors Combined with 3D-Printed Microfluidic Chip for Heavy Metals Detection.
    Santangelo MF; Shtepliuk I; Filippini D; Puglisi D; Vagin M; Yakimova R; Eriksson J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol of living cell separation using the microfluidic dielectrophoresis integrated chip.
    Koba K; Yarimizu K; Fujiyoshi S; Oshiro K; Wakizaka Y; Takano M; Maruyama F
    STAR Protoc; 2022 Sep; 3(3):101527. PubMed ID: 35779257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus.
    Chand R; Neethirajan S
    Biosens Bioelectron; 2017 Dec; 98():47-53. PubMed ID: 28649024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for metabolic synergy analysis of multi-organs in mice using iMS2Net.
    Dong J; Peng Q; Deng L; Zhao C; Cai Z
    STAR Protoc; 2023 Mar; 4(2):102159. PubMed ID: 36920911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins.
    Haghayegh F; Salahandish R; Zare A; Khalghollah M; Sanati-Nezhad A
    Lab Chip; 2021 Dec; 22(1):108-120. PubMed ID: 34860233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.