These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 37243672)
1. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies. Stamp J; DenAdel A; Weinreich D; Crawford L G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37243672 [TBL] [Abstract][Full Text] [Related]
2. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. Crawford L; Zeng P; Mukherjee S; Zhou X PLoS Genet; 2017 Jul; 13(7):e1006869. PubMed ID: 28746338 [TBL] [Abstract][Full Text] [Related]
3. A scalable adaptive quadratic kernel method for interpretable epistasis analysis in complex traits. Fu B; Anand P; Anand A; Mefford J; Sankararaman S Genome Res; 2024 Oct; 34(9):1294-1303. PubMed ID: 39209554 [TBL] [Abstract][Full Text] [Related]
4. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package. Kadarmideen HN; Carmelo VAO Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355 [TBL] [Abstract][Full Text] [Related]
5. Two-stage genome-wide search for epistasis with implementation to Recombinant Inbred Lines (RIL) populations. Goldstein P; Korol AB; Reiner-Benaim A PLoS One; 2014; 9(12):e115680. PubMed ID: 25536193 [TBL] [Abstract][Full Text] [Related]
6. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases. Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383 [TBL] [Abstract][Full Text] [Related]
7. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies. Zhang W; Dai X; Wang Q; Xu S; Zhao PX PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861 [TBL] [Abstract][Full Text] [Related]
8. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies. Cowman T; Koyutürk M Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458 [TBL] [Abstract][Full Text] [Related]
9. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits. Zhang F; Xie D; Liang M; Xiong M PLoS Genet; 2016 Apr; 12(4):e1005965. PubMed ID: 27104857 [TBL] [Abstract][Full Text] [Related]
10. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs. Lee S; Xing EP Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association studies for epistatic genetic effects on fertility and reproduction traits in Holstein cattle. Alves K; Brito LF; Sargolzaei M; Schenkel FS J Anim Breed Genet; 2023 Nov; 140(6):624-637. PubMed ID: 37350080 [TBL] [Abstract][Full Text] [Related]
12. A Novel Mapping Strategy Utilizing Mouse Chromosome Substitution Strains Identifies Multiple Epistatic Interactions That Regulate Complex Traits. Miller AK; Chen A; Bartlett J; Wang L; Williams SM; Buchner DA G3 (Bethesda); 2020 Dec; 10(12):4553-4563. PubMed ID: 33023974 [TBL] [Abstract][Full Text] [Related]
13. Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast. Nguyen Ba AN; Lawrence KR; Rego-Costa A; Gopalakrishnan S; Temko D; Michor F; Desai MM Elife; 2022 Feb; 11():. PubMed ID: 35147078 [TBL] [Abstract][Full Text] [Related]
14. Enabling personal genomics with an explicit test of epistasis. Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385 [TBL] [Abstract][Full Text] [Related]
15. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits. Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983 [TBL] [Abstract][Full Text] [Related]
16. Identifying quantitative trait locus by genetic background interactions in association studies. Jannink JL Genetics; 2007 May; 176(1):553-61. PubMed ID: 17179077 [TBL] [Abstract][Full Text] [Related]
17. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related]
18. The Combined Analysis of Pleiotropy and Epistasis (CAPE). Tyler AL; Emerson J; El Kassaby B; Wells AE; Philip VM; Carter GW Methods Mol Biol; 2021; 2212():55-67. PubMed ID: 33733350 [TBL] [Abstract][Full Text] [Related]
19. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values. Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229 [TBL] [Abstract][Full Text] [Related]
20. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data. Masotti M; Guo B; Wu B Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]