These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37243836)
1. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. Mettakoonpitak J; Sawatdichai N; Thepnuan D; Siripinyanond A; Henry CS; Chantara S Mikrochim Acta; 2023 May; 190(6):241. PubMed ID: 37243836 [TBL] [Abstract][Full Text] [Related]
2. Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples. Mettakoonpitak J; Volckens J; Henry CS Anal Chem; 2020 Jan; 92(1):1439-1446. PubMed ID: 31820945 [TBL] [Abstract][Full Text] [Related]
3. Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation. Xiong Q; Yu H; Wang R; Wei J; Verma V Environ Sci Technol; 2017 Jun; 51(11):6507-6514. PubMed ID: 28489384 [TBL] [Abstract][Full Text] [Related]
4. Development of a Physiologically Relevant Online Chemical Assay To Quantify Aerosol Oxidative Potential. Campbell SJ; Utinger B; Lienhard DM; Paulson SE; Shen J; Griffiths PT; Stell AC; Kalberer M Anal Chem; 2019 Oct; 91(20):13088-13095. PubMed ID: 31525864 [TBL] [Abstract][Full Text] [Related]
5. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity. Sameenoi Y; Koehler K; Shapiro J; Boonsong K; Sun Y; Collett J; Volckens J; Henry CS J Am Chem Soc; 2012 Jun; 134(25):10562-8. PubMed ID: 22651886 [TBL] [Abstract][Full Text] [Related]
7. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff. Han X; Meng Z; Zhang H; Zheng J Mikrochim Acta; 2018 May; 185(5):274. PubMed ID: 29717357 [TBL] [Abstract][Full Text] [Related]
8. Development and characterization of a gold nanoparticles glassy carbon modified electrode for dithiotreitol (DTT) detection suitable to be applied for determination of atmospheric particulate oxidative potential. Romano MP; Lionetto MG; Mangone A; De Bartolomeo AR; Giordano ME; Contini D; Guascito MR Anal Chim Acta; 2022 May; 1206():339556. PubMed ID: 35473859 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Chaiyo S; Mehmeti E; Žagar K; Siangproh W; Chailapakul O; Kalcher K Anal Chim Acta; 2016 Apr; 918():26-34. PubMed ID: 27046207 [TBL] [Abstract][Full Text] [Related]
10. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478 [TBL] [Abstract][Full Text] [Related]
11. Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. Dungchai W; Sameenoi Y; Chailapakul O; Volckens J; Henry CS Analyst; 2013 Nov; 138(22):6766-73. PubMed ID: 24067623 [TBL] [Abstract][Full Text] [Related]
12. Multiplexed paper analytical device for quantification of metals using distance-based detection. Cate DM; Noblitt SD; Volckens J; Henry CS Lab Chip; 2015 Jul; 15(13):2808-18. PubMed ID: 26009988 [TBL] [Abstract][Full Text] [Related]
13. Copper Film Modified Glassy Carbon Electrode and Copper Film with Carbon Nanotubes Modified Screen-Printed Electrode for the Cd(II) Determination. Wasąg J; Grabarczyk M Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576372 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Alidoust M; Yamini Y; Baharfar M Anal Chim Acta; 2022 Jul; 1216():339987. PubMed ID: 35691677 [TBL] [Abstract][Full Text] [Related]
15. Low-Cost Reusable Sensor for Cobalt and Nickel Detection in Aerosols Using Adsorptive Cathodic Square-Wave Stripping Voltammetry. Mettakoonpitak J; Miller-Lionberg D; Reilly T; Volckens J; Henry CS J Electroanal Chem (Lausanne); 2017 Nov; 805():75-82. PubMed ID: 29399008 [TBL] [Abstract][Full Text] [Related]
16. A colorimetric assay system for dopamine using microfluidic paper-based analytical devices. Liu C; Gomez FA; Miao Y; Cui P; Lee W Talanta; 2019 Mar; 194():171-176. PubMed ID: 30609518 [TBL] [Abstract][Full Text] [Related]
17. Rapid and simultaneous electrochemical method to measure copper and lead in canine liver biopsy. Meucci V; Battaglia F; Marchetti V; Gori E; Intorre L MethodsX; 2020; 7():101154. PubMed ID: 33299808 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic paper-based analytical devices coupled with coprecipitation enrichment show improved trace analysis of copper ions in water samples. Muhammed A; Hussen A; Kaneta T Anal Sci; 2022 Jan; 38(1):123-130. PubMed ID: 35287213 [TBL] [Abstract][Full Text] [Related]
20. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]