BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37244301)

  • 1. Local production of active vitamin D
    Dennis C; Dillon J; Cohen DJ; Halquist MS; Pearcy AC; Schwartz Z; Boyan BD
    J Steroid Biochem Mol Biol; 2023 Sep; 232():106331. PubMed ID: 37244301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent antiproliferative effects of 25-hydroxy-16-ene-23-yne-vitamin D₃ that resists the catalytic activity of both CYP27B1 and CYP24A1.
    Rhieu SY; Annalora AJ; LaPorta E; Welsh J; Itoh T; Yamamoto K; Sakaki T; Chen TC; Uskokovic MR; Reddy GS
    J Cell Biochem; 2014 Aug; 115(8):1392-402. PubMed ID: 24535953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice.
    Kaufmann M; Lee SM; Pike JW; Jones G
    Endocrinology; 2015 Dec; 156(12):4388-97. PubMed ID: 26441239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse.
    Masuda S; Byford V; Arabian A; Sakai Y; Demay MB; St-Arnaud R; Jones G
    Endocrinology; 2005 Feb; 146(2):825-34. PubMed ID: 15498883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 1,25 and 24,25 Vitamin D on Corneal Epithelial Proliferation, Migration and Vitamin D Metabolizing and Catabolizing Enzymes.
    Lu X; Chen Z; Mylarapu N; Watsky MA
    Sci Rep; 2017 Dec; 7(1):16951. PubMed ID: 29208972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic mechanisms controlling renal vitamin D metabolism.
    Meyer MB; Pike JW
    J Steroid Biochem Mol Biol; 2023 Apr; 228():106252. PubMed ID: 36657729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression.
    Meyer MB; Pike JW
    J Steroid Biochem Mol Biol; 2020 Feb; 196():105500. PubMed ID: 31629064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D metabolism and regulation in pediatric MSCs.
    Ruggiero B; Padwa BL; Christoph KM; Zhou S; Glowacki J
    J Steroid Biochem Mol Biol; 2016 Nov; 164():287-291. PubMed ID: 26385609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of vitamin D3 by cytochromes P450.
    Sakaki T; Kagawa N; Yamamoto K; Inouye K
    Front Biosci; 2005 Jan; 10():119-34. PubMed ID: 15574355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Relative Expression of ERα Isoforms ERα66 and ERα36 Controls the Cellular Response to 24R,25-Dihydroxyvitamin D3 in Breast Cancer.
    Verma A; Cohen DJ; Jacobs TW; Boyan BD; Schwartz Z
    Mol Cancer Res; 2021 Jan; 19(1):99-111. PubMed ID: 33082240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1α,25-dihydroxyvitamin D₃.
    Wang Y; Zhu J; DeLuca HF
    Am J Physiol Endocrinol Metab; 2015 Feb; 308(3):E201-5. PubMed ID: 25425001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human mammary epithelial cells express CYP27B1 and are growth inhibited by 25-hydroxyvitamin D-3, the major circulating form of vitamin D-3.
    Kemmis CM; Salvador SM; Smith KM; Welsh J
    J Nutr; 2006 Apr; 136(4):887-92. PubMed ID: 16549446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laryngeal Cancer Cells Metabolize 25-Hydroxyvitamin D
    Dennis CD; Dillon JT; Patel PH; Cohen DJ; Halquist MS; Pearcy AC; Boyan BD; Schwartz Z
    Cancers (Basel); 2024 Apr; 16(9):. PubMed ID: 38730587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin D
    Grzesiak M; Kaminska K; Bodzioch A; Drzewiecka EM; Franczak A; Knapczyk-Stwora K
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of vitamin D receptor, CYP27B1 and CYP24A1 hydroxylases and 1,25-dihydroxyvitamin D
    Melo TL; Esper PLG; Zambrano LI; Ormanji MS; Rodrigues FG; Heilberg IP
    Urolithiasis; 2020 Feb; 48(1):19-26. PubMed ID: 31696245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of High-Quality Spermatozoa May Be Promoted by Activated Vitamin D in the Woman.
    Bøllehuus Hansen L; Rehfeld A; de Neergaard R; Nielsen JE; Iversen LH; Boisen IM; Mortensen LJ; Lanske B; Almstrup K; Carlsen E; Berg AH; Jørgensen N; Andersen AN; Juul A; Blomberg Jensen M
    J Clin Endocrinol Metab; 2017 Mar; 102(3):950-961. PubMed ID: 27977320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of 1α-hydroxylase and vitamin D receptor in human articular chondrocytes.
    Hansen AK; Figenschau Y; Zubiaurre-Martinez I
    BMC Musculoskelet Disord; 2017 Nov; 18(1):432. PubMed ID: 29110708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D machinery and metabolism in porcine adipose-derived mesenchymal stem cells.
    Valle YL; Almalki SG; Agrawal DK
    Stem Cell Res Ther; 2016 Aug; 7(1):118. PubMed ID: 27530414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective use of multiple vitamin D response elements underlies the 1 alpha,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene.
    Turunen MM; Dunlop TW; Carlberg C; Väisänen S
    Nucleic Acids Res; 2007; 35(8):2734-47. PubMed ID: 17426122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.