These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37244450)

  • 1. Intestinal organoids as an in vitro platform to characterize disposition, metabolism, and safety profile of small molecules.
    Kourula S; Derksen M; Jardi F; Jonkers S; van Heerden M; Verboven P; Theuns V; Van Asten S; Huybrechts T; Kunze A; Frazer-Mendelewska E; Lai KW; Overmeer R; Roos JL; Vries RGJ; Boj SF; Monshouwer M; Pourfarzad F; Snoeys J
    Eur J Pharm Sci; 2023 Sep; 188():106481. PubMed ID: 37244450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human enteroid monolayers as a potential alternative for Ussing chamber and Caco-2 monolayers to study passive permeability and drug efflux.
    Streekstra EJ; Keuper-Navis M; van den Heuvel JJMW; van den Broek P; Stommel MWJ; Bervoets S; O'Gorman L; Greupink R; Russel FGM; van de Steeg E; de Wildt SN
    Eur J Pharm Sci; 2024 Oct; 201():106877. PubMed ID: 39154715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Black ginger extract and its active compound, 5,7-dimethoxyflavone, increase intestinal drug absorption via efflux drug transporter inhibitions.
    Boonnop R; Meetam P; Siangjong L; Tuchinda P; Thongphasuk P; Soodvilai S; Soodvilai S
    Drug Metab Pharmacokinet; 2023 Jun; 50():100500. PubMed ID: 36948091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enteroids to Study Pediatric Intestinal Drug Transport.
    Streekstra EJ; Keuper-Navis M; van den Heuvel JJMW; van den Broek P; Stommel MWJ; de Boode W; Botden S; Bervoets S; O'Gorman L; Greupink R; Russel FGM; van de Steeg E; de Wildt SN
    Mol Pharm; 2024 Oct; 21(10):4983-4994. PubMed ID: 39279643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Value of quantifying ABC transporters by mass spectrometry and impact on in vitro-to-in vivo prediction of transporter-mediated drug-drug interactions of rivaroxaban.
    Jacqueroux E; Hodin S; Saib S; He Z; Bin V; Delézay O; Delavenne X
    Eur J Pharm Biopharm; 2020 Mar; 148():27-37. PubMed ID: 31945490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and Validation of Canine P-Glycoprotein-Deficient MDCK II Cell Lines for Efflux Substrate Screening.
    Ye D; Harder A; Fang Z; Weinheimer M; Laplanche L; Mezler M
    Pharm Res; 2020 Sep; 37(10):194. PubMed ID: 32918191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional intestinal monolayers from organoids derived from human iPS cells for drug discovery research.
    Inui T; Uraya Y; Yokota J; Yamashita T; Kawai K; Okada K; Ueyama-Toba Y; Mizuguchi H
    Stem Cell Res Ther; 2024 Feb; 15(1):57. PubMed ID: 38424603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge.
    Yu XY; Lin SG; Zhou ZW; Chen X; Liang J; Liu PQ; Duan W; Chowbay B; Wen JY; Li CG; Zhou SF
    Curr Drug Metab; 2007 May; 8(4):325-40. PubMed ID: 17504222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.
    Dahan A; Amidon GL
    Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G371-7. PubMed ID: 19541926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Breast Cancer Resistance Protein (BCRP/ABCG2) on Drug Transport Across Caco-2 Cell Monolayers.
    Kawahara I; Nishikawa S; Yamamoto A; Kono Y; Fujita T
    Drug Metab Dispos; 2020 Jun; 48(6):491-498. PubMed ID: 32193356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal absorption mechanisms of 2'-deoxy-2'-β-fluoro-4'-azidocytidine, a cytidine analog for AIDS treatment, and its interaction with P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein.
    Liu Y; Liu B; Zhang Y; Peng Y; Huang C; Wang N; Jiang J; Wang Q; Chang J
    Eur J Pharm Sci; 2017 Jul; 105():150-158. PubMed ID: 28487144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of MDR1-overexpressing cell lines to derive a quantitative prediction approach for brain disposition using in vitro efflux activities.
    Sato S; Tohyama K; Kosugi Y
    Eur J Pharm Sci; 2020 Jan; 142():105119. PubMed ID: 31682973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Hepatic and Intestinal Efflux Transport of Statins.
    Deng F; Tuomi SK; Neuvonen M; Hirvensalo P; Kulju S; Wenzel C; Oswald S; Filppula AM; Niemi M
    Drug Metab Dispos; 2021 Sep; 49(9):750-759. PubMed ID: 34162690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of efflux transporters involved in distribution and disposition of apixaban.
    Zhang D; He K; Herbst JJ; Kolb J; Shou W; Wang L; Balimane PV; Han YH; Gan J; Frost CE; Humphreys WG
    Drug Metab Dispos; 2013 Apr; 41(4):827-35. PubMed ID: 23382458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P-glycoprotein and breast cancer resistance protein affect disposition of tandutinib, a tyrosine kinase inhibitor.
    Yang JJ; Milton MN; Yu S; Liao M; Liu N; Wu JT; Gan L; Balani SK; Lee FW; Prakash S; Xia CQ
    Drug Metab Lett; 2010 Dec; 4(4):201-12. PubMed ID: 20670210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the Efflux In Vitro Assay Toolbox: A CRISPR-Cas9 Edited MDCK Cell Line with Human BCRP and Completely Lacking Canine MDR1.
    Wegler C; Gazit M; Issa K; Subramaniam S; Artursson P; Karlgren M
    J Pharm Sci; 2021 Jan; 110(1):388-396. PubMed ID: 33007277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro-In Vivo Extrapolation Scaling Factors for Intestinal P-glycoprotein and Breast Cancer Resistance Protein: Part II. The Impact of Cross-Laboratory Variations of Intestinal Transporter Relative Expression Factors on Predicted Drug Disposition.
    Harwood MD; Achour B; Neuhoff S; Russell MR; Carlson G; Warhurst G; Rostami-Hodjegan A
    Drug Metab Dispos; 2016 Mar; 44(3):476-80. PubMed ID: 26842595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new intestinal cell culture model to discriminate the relative contribution of P-gp and BCRP on transport of substrates such as imatinib.
    Graber-Maier A; Gutmann H; Drewe J
    Mol Pharm; 2010 Oct; 7(5):1618-28. PubMed ID: 20701289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells.
    Sampson KE; Brinker A; Pratt J; Venkatraman N; Xiao Y; Blasberg J; Steiner T; Bourner M; Thompson DC
    Drug Metab Dispos; 2015 Feb; 43(2):199-207. PubMed ID: 25388687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.
    Dahan A; Sabit H; Amidon GL
    AAPS J; 2009 Jun; 11(2):205-13. PubMed ID: 19319690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.