BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37244813)

  • 1. Electrogenetic control of gene expression in Shewanella oneidensis MR-1 using Arc-dependent transcriptional promoters.
    Tomita K; Hirose A; Tanaka Y; Kouzuma A; Watanabe K
    J Biosci Bioeng; 2023 Jul; 136(1):28-34. PubMed ID: 37244813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards development of electrogenetics using electrochemically active bacteria.
    Hirose A; Kouzuma A; Watanabe K
    Biotechnol Adv; 2019 Nov; 37(6):107351. PubMed ID: 30779953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways.
    Hirose A; Kasai T; Aoki M; Umemura T; Watanabe K; Kouzuma A
    Nat Commun; 2018 Mar; 9(1):1083. PubMed ID: 29540717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-dependent current generation and energy conservation by Shewanella oneidensis MR-1 in bioelectrochemical systems.
    Hirose A; Kouzuma A; Watanabe K
    J Biosci Bioeng; 2021 Jan; 131(1):27-32. PubMed ID: 32958393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Diguanylate Cyclase That Facilitates Biofilm Formation on Electrodes by Shewanella oneidensis MR-1.
    Matsumoto A; Koga R; Kanaly RA; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33637573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems.
    Kasai T; Tomioka Y; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2019 Oct; 129():100-105. PubMed ID: 31153124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.
    Nakagawa G; Kouzuma A; Hirose A; Kasai T; Yoshida G; Watanabe K
    PLoS One; 2015; 10(9):e0138813. PubMed ID: 26394222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor.
    Rosenbaum MA; Bar HY; Beg QK; Segrè D; Booth J; Cotta MA; Angenent LT
    PLoS One; 2012; 7(2):e30827. PubMed ID: 22319591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tactic Response of Shewanella oneidensis MR-1 toward Insoluble Electron Acceptors.
    Oram J; Jeuken LJC
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active N dopant states of electrodes regulate extracellular electron transfer of Shewanella oneidensis MR-1 for bioelectricity generation: Experimental and theoretical investigations.
    Wang YX; Li WQ; He CS; Zhao HQ; Han JC; Liu XC; Mu Y
    Biosens Bioelectron; 2020 Jul; 160():112231. PubMed ID: 32469730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.
    Grobbler C; Virdis B; Nouwens A; Harnisch F; Rabaey K; Bond PL
    Syst Appl Microbiol; 2015 Mar; 38(2):135-9. PubMed ID: 25523930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Condition Variations on Bioelectrochemical System Performance: An Experimental Investigation of Sulfamethoxazole Degradation.
    Xue Q; Chen Z; Xie W; Zhang S; Jiang J; Sun G
    Molecules; 2024 May; 29(10):. PubMed ID: 38792137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism.
    Ross DE; Flynn JM; Baron DB; Gralnick JA; Bond DR
    PLoS One; 2011 Feb; 6(2):e16649. PubMed ID: 21311751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hierarchically Modified Graphite Cathode with Au Nanoislands, Cysteamine, and Au Nanocolloids for Increased Electricity-Assisted Production of Isobutanol by Engineered Shewanella oneidensis MR-1.
    La JA; Jeon JM; Sang BI; Yang YH; Cho EC
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43563-43574. PubMed ID: 29172431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of Shewanella oneidensis MR-1 gene-knockout mutants that adapt to an electrode-respiring condition.
    Tajima N; Kouzuma A; Hashimoto K; Watanabe K
    Biosci Biotechnol Biochem; 2011; 75(11):2229-33. PubMed ID: 22056453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide.
    Zheng Z; Xiao Y; Wu R; Mølager Christensen HE; Zhao F; Zhang J
    Biosens Bioelectron; 2019 Oct; 142():111571. PubMed ID: 31445395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.
    West EA; Jain A; Gralnick JA
    ACS Synth Biol; 2017 Sep; 6(9):1627-1634. PubMed ID: 28562022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.