These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 37244876)

  • 21. Identification of a novel signature based on unfolded protein response-related gene for predicting prognosis in bladder cancer.
    Zhu K; Xiaoqiang L; Deng W; Wang G; Fu B
    Hum Genomics; 2021 Dec; 15(1):73. PubMed ID: 34930465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and validation of biomarkers for epithelial-mesenchymal transition-related cells to estimate the prognosis and immune microenvironment in primary gastric cancer by the integrated analysis of single-cell and bulk RNA sequencing data.
    Shen K; Ke S; Chen B; Zhang T; Wang H; Lv J; Gao W
    Math Biosci Eng; 2023 Jun; 20(8):13798-13823. PubMed ID: 37679111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel TGF-β Risk Score Predicts the Clinical Outcomes and Tumour Microenvironment Phenotypes in Bladder Cancer.
    Liu Z; Qi T; Li X; Yao Y; Othmane B; Chen J; Zu X; Ou Z; Hu J
    Front Immunol; 2021; 12():791924. PubMed ID: 34975891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Results from a real-world study: a novel glycosyltransferase risk score for prognosis, tumor microenvironment phenotypes and immunotherapy in bladder cancer.
    Liu R; Yang T; Huang J; Xiao Z; Liu J; Li Z; Tong S
    BMC Cancer; 2024 Aug; 24(1):947. PubMed ID: 39095785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining single-cell sequencing data to construct a prognostic signature to predict survival, immune microenvironment, and immunotherapy response in gastric cancer patients.
    Hu B; Meng Y; Qu C; Wang BY; Xiu DR
    Front Immunol; 2022; 13():1018413. PubMed ID: 36300104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor Expression Profile Analysis Developed and Validated a Prognostic Model Based on Immune-Related Genes in Bladder Cancer.
    Dong B; Liang J; Li D; Song W; Zhao S; Ma Y; Song J; Zhu M; Yang T
    Front Genet; 2021; 12():696912. PubMed ID: 34512722
    [No Abstract]   [Full Text] [Related]  

  • 27. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq.
    Zhang D; Lu W; Cui S; Mei H; Wu X; Zhuo Z
    J Ovarian Res; 2022 Nov; 15(1):123. PubMed ID: 36424614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel immune-related gene pair prognostic signature for predicting overall survival in bladder cancer.
    Fu Y; Sun S; Bi J; Kong C; Yin L
    BMC Cancer; 2021 Jul; 21(1):810. PubMed ID: 34266411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer.
    Wang Z; Tu L; Chen M; Tong S
    BMC Cancer; 2021 Jun; 21(1):692. PubMed ID: 34112144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures.
    Dong Y; Wu X; Xu C; Hameed Y; Abdel-Maksoud MA; Almanaa TN; Kotob MH; Al-Qahtani WH; Mahmoud AM; Cho WC; Li C
    Aging (Albany NY); 2024 Feb; 16(3):2591-2616. PubMed ID: 38305808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prognostic model based on B cell marker genes for NSCLC patients under neoadjuvant immunotherapy by integrated analysis of single-cell and bulk RNA-sequencing data.
    Liu Y; Bie F; Bai G; Huai Q; Li Y; Chen X; Zhou B; Gao S
    Clin Transl Oncol; 2024 Aug; 26(8):2025-2036. PubMed ID: 38563846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of MTHFD2 represents an inflamed tumor microenvironment and precisely predicts the molecular subtype and immunotherapy response of bladder cancer.
    Shi X; Peng X; Chen Y; Shi Z; Yue C; Zuo L; Zhang L; Gao S
    Front Immunol; 2023; 14():1326509. PubMed ID: 38130721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction and validation of a bladder cancer risk model based on autophagy-related genes.
    Shen C; Yan Y; Yang S; Wang Z; Wu Z; Li Z; Zhang Z; Lin Y; Li P; Hu H
    Funct Integr Genomics; 2023 Jan; 23(1):46. PubMed ID: 36689018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and Validation of a Novel Signature Based on NK Cell Marker Genes to Predict Prognosis and Immunotherapy Response in Lung Adenocarcinoma by Integrated Analysis of Single-Cell and Bulk RNA-Sequencing.
    Song P; Li W; Guo L; Ying J; Gao S; He J
    Front Immunol; 2022; 13():850745. PubMed ID: 35757748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the CD8 + T-cell Related Signature for Predicting the Prognosis of Gastric Cancer Based on Integrated Analysis of Bulk and Single-cell RNA Sequencing Data.
    Zhu ZG; Wang Z; Wu Q; Miao DL; Jin YQ; Chen L
    J Immunother; 2024 Sep; 47(7):239-248. PubMed ID: 38809517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a prognostic model to predict BLCA based on anoikis-related gene signature: preliminary findings.
    Zhu S; Zhao Q; Fan Y; Tang C
    BMC Urol; 2023 Dec; 23(1):199. PubMed ID: 38049825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of an ovarian cancer exhausted CD8+T cells-related genes model by integrated analysis of scRNA-seq and bulk RNA-seq.
    Hua T; Liu DX; Zhang XC; Li ST; Wu JL; Zhao Q; Chen SB
    Eur J Med Res; 2024 Jul; 29(1):358. PubMed ID: 38970067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a CD8+ T cell associated signature for predicting the prognosis and immunological characteristics of gastric cancer by integrating single-cell and bulk RNA-sequencing.
    Li J; Han T; Wang X; Wang Y; Yang R; Yang Q
    Sci Rep; 2024 Feb; 14(1):4524. PubMed ID: 38402299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of an inflammation-related risk signature for prognosis and immunotherapeutic response prediction in bladder cancer.
    Wang Y; Tang Y; Liu Z; Tan X; Zou Y; Luo S; Yao K
    Sci Rep; 2024 Jan; 14(1):1216. PubMed ID: 38216619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disulfidptosis characterizes the tumor microenvironment and predicts immunotherapy sensitivity and prognosis in bladder cancer.
    Pan G; Xie H; Xia Y
    Heliyon; 2024 Feb; 10(3):e25573. PubMed ID: 38356551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.