These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37245032)

  • 1. Improved bioenergy value of residual rice straw by increased lipid levels from upregulation of fatty acid biosynthesis.
    Jin Y; Hu J; Su J; Aslan S; Lin Y; Jin L; Isaksson S; Liu C; Wang F; Schnürer A; Sitbon F; Hofvander P; Sun C
    Biotechnol Biofuels Bioprod; 2023 May; 16(1):90. PubMed ID: 37245032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of
    Yang J; Tian R; Gao Z; Yang H
    Biosci Biotechnol Biochem; 2019 Oct; 83(10):1807-1814. PubMed ID: 31179846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atypical Splicing Accompanied by Skipping Conserved Micro-exons Produces Unique WRINKLED1, An AP2 Domain Transcription Factor in Rice Plants.
    Mano F; Aoyanagi T; Kozaki A
    Plants (Basel); 2019 Jul; 8(7):. PubMed ID: 31277505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of the WRI1-TCP4 regulatory module in lipid biosynthesis.
    Kong Q; Yang Y; Low PM; Guo L; Yuan L; Ma W
    Plant Signal Behav; 2020 Nov; 15(11):1812878. PubMed ID: 32880205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of
    An D; Kim H; Ju S; Go YS; Kim HU; Suh MC
    Front Plant Sci; 2017; 8():34. PubMed ID: 28174580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis.
    Ma W; Kong Q; Grix M; Mantyla JJ; Yang Y; Benning C; Ohlrogge JB
    Plant J; 2015 Sep; 83(5):864-74. PubMed ID: 26305482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size reduction of rice straw enhances methane production under anaerobic digestion.
    Dai X; Hua Y; Dai L; Cai C
    Bioresour Technol; 2019 Dec; 293():122043. PubMed ID: 31472406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolically engineered rice biomass and grain using genes associated with lipid pathway show high level of oil content.
    Izadi-Darbandi A; Younessi-Hamzekhanlu M; Sticklen M
    Mol Biol Rep; 2020 Oct; 47(10):7917-7927. PubMed ID: 32975743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review on anaerobic digestion of rice straw for biogas production.
    Mothe S; Polisetty VR
    Environ Sci Pollut Res Int; 2021 May; 28(19):24455-24469. PubMed ID: 32335832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure.
    Ye J; Li D; Sun Y; Wang G; Yuan Z; Zhen F; Wang Y
    Waste Manag; 2013 Dec; 33(12):2653-8. PubMed ID: 23790673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascade utilization of rice straw for biogas production.
    Chen G; Cao H; Tang Y; Ni K; Wang J; Wu P
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):50444-50456. PubMed ID: 36795205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Basis of Plant Oil Biosynthesis: Insights Gained From Studying the WRINKLED1 Transcription Factor.
    Kong Q; Yang Y; Guo L; Yuan L; Ma W
    Front Plant Sci; 2020; 11():24. PubMed ID: 32117370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and Predictive Structural Characterization of WRINKLED2, A Unique Oil Biosynthesis Regulator in Avocado.
    Behera JR; Rahman MM; Bhatia S; Shockey J; Kilaru A
    Front Plant Sci; 2021; 12():648494. PubMed ID: 34168663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study.
    Zhou J; Yang J; Yu Q; Yong X; Xie X; Zhang L; Wei P; Jia H
    Bioresour Technol; 2017 Nov; 244(Pt 1):865-871. PubMed ID: 28847074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-production of biogas and humic acid using rice straw and pig manure as substrates through solid-state anaerobic fermentation and subsequent aerobic composting.
    Ji JL; Chen F; Liu S; Yang Y; Hou C; Wang YZ
    J Environ Manage; 2022 Oct; 320():115860. PubMed ID: 35961141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp.
    Ma W; Kong Q; Arondel V; Kilaru A; Bates PD; Thrower NA; Benning C; Ohlrogge JB
    PLoS One; 2013; 8(7):e68887. PubMed ID: 23922666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biogas production potential analysis of rice straw: Biomass characterization, kinetics and anaerobic co-digestion investigations.
    Pal DB; Tiwari AK; Mohammad A; Prasad N; Srivastava N; Srivastava KR; Singh R; Yoon T; Syed A; Bahkali AH; Gupta VK
    Bioresour Technol; 2022 Aug; 358():127391. PubMed ID: 35636675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw.
    Khalid MJ; Zeshan ; Waqas A; Nawaz I
    Bioresour Technol; 2019 Mar; 275():288-296. PubMed ID: 30594839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.
    Contreras LM; Schelle H; Sebrango CR; Pereda I
    Water Sci Technol; 2012; 65(6):1142-9. PubMed ID: 22378015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effects of rice straw and rice bran on enhanced methane production and process stability of anaerobic digestion of food waste.
    Hou T; Zhao J; Lei Z; Shimizu K; Zhang Z
    Bioresour Technol; 2020 Oct; 314():123775. PubMed ID: 32652449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.