These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Connecting high-resolution 3D chromatin organization with epigenomics. Feng F; Yao Y; Wang XQD; Zhang X; Liu J Nat Commun; 2022 Apr; 13(1):2054. PubMed ID: 35440119 [TBL] [Abstract][Full Text] [Related]
3. 4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling. Abdulla AZ; Salari H; Tortora MMC; Vaillant C; Jost D Curr Opin Genet Dev; 2023 Apr; 79():102033. PubMed ID: 36893485 [TBL] [Abstract][Full Text] [Related]
4. Polymer Modeling of 3D Epigenome Folding: Application to Drosophila. Jost D Methods Mol Biol; 2022; 2301():293-305. PubMed ID: 34415542 [TBL] [Abstract][Full Text] [Related]
5. Molecular and computational approaches to map regulatory elements in 3D chromatin structure. Lee BH; Rhie SK Epigenetics Chromatin; 2021 Mar; 14(1):14. PubMed ID: 33741028 [TBL] [Abstract][Full Text] [Related]
6. Decoding the plant genome: From epigenome to 3D organization. Ouyang W; Cao Z; Xiong D; Li G; Li X J Genet Genomics; 2020 Aug; 47(8):425-435. PubMed ID: 33023833 [TBL] [Abstract][Full Text] [Related]
7. Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Jost D; Vaillant C Nucleic Acids Res; 2018 Mar; 46(5):2252-2264. PubMed ID: 29365171 [TBL] [Abstract][Full Text] [Related]
8. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817 [TBL] [Abstract][Full Text] [Related]
12. Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory. Abdulla AZ; Vaillant C; Jost D Nucleic Acids Res; 2022 Sep; 50(16):9083-9104. PubMed ID: 36018799 [TBL] [Abstract][Full Text] [Related]
13. A guide to visualizing the spatial epigenome with super-resolution microscopy. Xu J; Liu Y FEBS J; 2019 Aug; 286(16):3095-3109. PubMed ID: 31127980 [TBL] [Abstract][Full Text] [Related]
14. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. Li WV; Razaee ZS; Li JJ BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822 [TBL] [Abstract][Full Text] [Related]
15. Epigenomics: Technologies and Applications. Wang KC; Chang HY Circ Res; 2018 Apr; 122(9):1191-1199. PubMed ID: 29700067 [TBL] [Abstract][Full Text] [Related]
16. Prospects and challenges of epigenomics in crop improvement. Huang Y; Liu Y; Liu C; Birchler JA; Han F Genes Genomics; 2022 Mar; 44(3):251-257. PubMed ID: 34837632 [TBL] [Abstract][Full Text] [Related]
17. GPSeq reveals the radial organization of chromatin in the cell nucleus. Girelli G; Custodio J; Kallas T; Agostini F; Wernersson E; Spanjaard B; Mota A; Kolbeinsdottir S; Gelali E; Crosetto N; Bienko M Nat Biotechnol; 2020 Oct; 38(10):1184-1193. PubMed ID: 32451505 [TBL] [Abstract][Full Text] [Related]
18. How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes. Ghosh SK; Jost D PLoS Comput Biol; 2018 May; 14(5):e1006159. PubMed ID: 29813054 [TBL] [Abstract][Full Text] [Related]
19. Computational methods to explore chromatin state dynamics. Orouji E; Raman AT Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208178 [TBL] [Abstract][Full Text] [Related]