These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37245396)

  • 1. A sustainable process for selective recovery of metals from gallium-bearing waste generated from LED industry.
    Yang Y; Zheng X; Tao T; Rao F; Gao W; Huang Z; Leng G; Min X; Chen B; Sun Z
    Waste Manag; 2023 Jul; 167():55-63. PubMed ID: 37245396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.
    Swain B; Mishra C; Kang L; Park KS; Lee CG; Hong HS
    Environ Res; 2015 Apr; 138():401-8. PubMed ID: 25769129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals.
    Fang S; Tao T; Cao H; He M; Zeng X; Ning P; Zhao H; Wu M; Zhang Y; Sun Z
    Waste Manag; 2019 Apr; 89():212-223. PubMed ID: 31079734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.
    Swain B; Mishra C; Lee CG; Park KS; Lee KJ
    Environ Res; 2015 Jul; 140():704-13. PubMed ID: 26094059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of critical metals from leach solution of electronic waste using magnetite electrospun carbon nanofibres composite.
    Iqbal A; Jan MR; Shah J; Rashid B
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):88763-88778. PubMed ID: 35838938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient recovery of Cu and Ni from WPCB via alkali leaching approach.
    Jadhao PR; Pandey A; Pant KK; Nigam KDP
    J Environ Manage; 2021 Oct; 296():113154. PubMed ID: 34216905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes.
    Zhan L; Xia F; Ye Q; Xiang X; Xie B
    J Hazard Mater; 2015 Dec; 299():388-94. PubMed ID: 26150281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.
    Savvilotidou V; Hahladakis JN; Gidarakos E
    Waste Manag; 2015 Nov; 45():314-24. PubMed ID: 26087646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering valuable metals from recycled photovoltaic modules.
    Yi YK; Kim HS; Tran T; Hong SK; Kim MJ
    J Air Waste Manag Assoc; 2014 Jul; 64(7):797-807. PubMed ID: 25122953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkali circulating leaching of arsenic from copper smelter dust based on arsenic-alkali efficient separation.
    Tian J; Zhang X; Wang Y; Han H; Sun W; Yue T; Sun J
    J Environ Manage; 2021 Jun; 287():112348. PubMed ID: 33735678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commercial indium recovery processes development from various e-(industry) waste through the insightful integration of valorization processes: A perspective.
    Swain B; Lee CG
    Waste Manag; 2019 Mar; 87():597-611. PubMed ID: 31109560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.
    Chancerel P; Rotter VS; Ueberschaar M; Marwede M; Nissen NF; Lang KD
    Waste Manag Res; 2013 Oct; 31(10 Suppl):3-16. PubMed ID: 24068305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6989-7008. PubMed ID: 28091997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.
    Sun ZH; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Waste Manag; 2016 Nov; 57():140-148. PubMed ID: 27021695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Donnan Dialysis-Osmotic Distillation (DD-OD) Hybrid Process for Selective Ammonium Recovery Driven by Waste Alkali.
    Chen C; Han M; Yao J; Zhi Y; Liu Y; Zhang C; Han L
    Environ Sci Technol; 2021 May; 55(10):7015-7024. PubMed ID: 33905246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.