BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37245652)

  • 1. GAEP: a comprehensive genome assembly evaluating pipeline.
    Zhang Y; Lu HW; Ruan J
    J Genet Genomics; 2023 Oct; 50(10):747-754. PubMed ID: 37245652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scanPAV: a pipeline for extracting presence-absence variations in genome pairs.
    Giordano F; Stammnitz MR; Murchison EP; Ning Z
    Bioinformatics; 2018 Sep; 34(17):3022-3024. PubMed ID: 29608694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations.
    Manchanda N; Portwood JL; Woodhouse MR; Seetharam AS; Lawrence-Dill CJ; Andorf CM; Hufford MB
    BMC Genomics; 2020 Mar; 21(1):193. PubMed ID: 32122303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly.
    Huang S; Kang M; Xu A
    Bioinformatics; 2017 Aug; 33(16):2577-2579. PubMed ID: 28407147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies.
    Yang LA; Chang YJ; Chen SH; Lin CY; Ho JM
    BMC Genomics; 2019 Apr; 19(Suppl 9):238. PubMed ID: 30999844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome sequence assembly algorithms and misassembly identification methods.
    Meng Y; Lei Y; Gao J; Liu Y; Ma E; Ding Y; Bian Y; Zu H; Dong Y; Zhu X
    Mol Biol Rep; 2022 Nov; 49(11):11133-11148. PubMed ID: 36151399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARAMIS: From systematic errors of NGS long reads to accurate assemblies.
    Sacristán-Horcajada E; González-de la Fuente S; Peiró-Pastor R; Carrasco-Ramiro F; Amils R; Requena JM; Berenguer J; Aguado B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile genome assembly evaluation with QUAST-LG.
    Mikheenko A; Prjibelski A; Saveliev V; Antipov D; Gurevich A
    Bioinformatics; 2018 Jul; 34(13):i142-i150. PubMed ID: 29949969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations.
    Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequencing smart: De novo sequencing and assembly approaches for a non-model mammal.
    Etherington GJ; Heavens D; Baker D; Lister A; McNelly R; Garcia G; Clavijo B; Macaulay I; Haerty W; Di Palma F
    Gigascience; 2020 May; 9(5):. PubMed ID: 32396200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do it yourself guide to genome assembly.
    Wajid B; Serpedin E
    Brief Funct Genomics; 2016 Jan; 15(1):1-9. PubMed ID: 25392234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dnAQET: a framework to compute a consolidated metric for benchmarking quality of de novo assemblies.
    Yavas G; Hong H; Xiao W
    BMC Genomics; 2019 Sep; 20(1):706. PubMed ID: 31510940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ntLink: A Toolkit for De Novo Genome Assembly Scaffolding and Mapping Using Long Reads.
    Coombe L; Warren RL; Wong J; Nikolic V; Birol I
    Curr Protoc; 2023 Apr; 3(4):e733. PubMed ID: 37039735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAECI: A pipeline for generating consensus sequence with nanopore sequencing long-read assembly and error correction.
    Lang J
    PLoS One; 2022; 17(5):e0267066. PubMed ID: 35594250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues.
    Colella JP; Tigano A; MacManes MD
    Mol Ecol Resour; 2020 Jul; 20(4):856-870. PubMed ID: 32153100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies.
    Song G; Lee J; Kim J; Kang S; Lee H; Kwon D; Lee D; Lang GI; Cherry JM; Kim J
    PLoS One; 2019; 14(8):e0221858. PubMed ID: 31454399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAVISUNK: genome assembly validation via inter-SUNK distances in Oxford Nanopore reads.
    Dishuck PC; Rozanski AN; Logsdon GA; Porubsky D; Eichler EE
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36321867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redundans: an assembly pipeline for highly heterozygous genomes.
    Pryszcz LP; Gabaldón T
    Nucleic Acids Res; 2016 Jul; 44(12):e113. PubMed ID: 27131372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common workflow language (CWL)-based software pipeline for de novo genome assembly from long- and short-read data.
    Korhonen PK; Hall RS; Young ND; Gasser RB
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30821816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.