These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37245762)

  • 1. The biosynthesis of amidated bacterial cellulose derivatives via in-situ strategy.
    Lin J; Sun B; Zhang H; Yang X; Qu X; Zhang L; Chen C; Sun D
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124831. PubMed ID: 37245762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization.
    Lopes TD; Riegel-Vidotti IC; Grein A; Tischer CA; Faria-Tischer PC
    Int J Biol Macromol; 2014 Jun; 67():401-8. PubMed ID: 24704166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ regulation of bacterial cellulose networks by starch from different sources or amylose/amylopectin content during fermentation.
    Wang FP; Li B; Sun MY; Wahid F; Zhang HM; Wang SJ; Xie YY; Jia SR; Zhong C
    Int J Biol Macromol; 2022 Jan; 195():59-66. PubMed ID: 34871660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture.
    Bi JC; Liu SX; Li CF; Li J; Liu LX; Deng J; Yang YC
    J Appl Microbiol; 2014 Nov; 117(5):1305-11. PubMed ID: 25098972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07.
    Gao G; Cao Y; Zhang Y; Wu M; Ma T; Li G
    Carbohydr Polym; 2020 Nov; 248():116788. PubMed ID: 32919576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial cellulose/gum Arabic composite production by in-situ modification from lavender residue hydrolysate.
    Jia HP; Wang XL; Liu ZW; Wu Y; Gao J; Hu Y; Chen Y; Huang C
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):126961. PubMed ID: 37722637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and characterization of bacterial cellulose membranes with hyaluronic acid and silk sericin.
    Wang X; Tang J; Huang J; Hui M
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111273. PubMed ID: 32721822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecofriendly green biosynthesis and characterization of novel bacteriocin-loaded bacterial cellulose nanofiber from Gluconobacter cerinus HDX-1.
    Du R; Ping W; Song G; Ge J
    Int J Biol Macromol; 2021 Dec; 193(Pt A):693-701. PubMed ID: 34737079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel bioactive surface functionalization of bacterial cellulose membrane.
    Shao W; Wu J; Liu H; Ye S; Jiang L; Liu X
    Carbohydr Polym; 2017 Dec; 178():270-276. PubMed ID: 29050594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites.
    Shao W; Liu H; Liu X; Sun H; Wang S; Zhang R
    Int J Biol Macromol; 2015 May; 76():209-17. PubMed ID: 25748842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement production of bacterial cellulose by semi-continuous process in molasses medium.
    Cakar F; Ozer I; Aytekin AÖ; Sahin F
    Carbohydr Polym; 2014 Jun; 106():7-13. PubMed ID: 24721044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel static cultivation of bacterial cellulose production from sugar beet molasses: Series static culture (SSC) system.
    Öz YE; Kalender M
    Int J Biol Macromol; 2023 Jan; 225():1306-1314. PubMed ID: 36435464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A natural in situ fabrication method of functional bacterial cellulose using a microorganism.
    Gao M; Li J; Bao Z; Hu M; Nian R; Feng D; An D; Li X; Xian M; Zhang H
    Nat Commun; 2019 Jan; 10(1):437. PubMed ID: 30683871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ structural modification of bacterial cellulose by sodium fluoride.
    Sun B; Zhang L; Wei F; Al-Ammari A; Xu X; Li W; Chen C; Lin J; Zhang H; Sun D
    Carbohydr Polym; 2020 Mar; 231():115765. PubMed ID: 31888807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial Cellulose Hybrid Composites with Calcium Phosphate for Bone Tissue Regeneration.
    Busuioc C; Isopencu G; Banciu A; Banciu DD; Oprea O; Mocanu A; Deleanu I; Zăuleţ M; Popescu L; Tănăsuică R; Vasilescu M; Stoica-Guzun A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of culture mode on bacterial cellulose production and its structure and property].
    Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm inspired fabrication of functional bacterial cellulose through ex-situ and in-situ approaches.
    Gilmour KA; Aljannat M; Markwell C; James P; Scott J; Jiang Y; Torun H; Dade-Robertson M; Zhang M
    Carbohydr Polym; 2023 Mar; 304():120482. PubMed ID: 36641190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microporous bacterial cellulose as a potential scaffold for bone regeneration.
    Zaborowska M; Bodin A; Bäckdahl H; Popp J; Goldstein A; Gatenholm P
    Acta Biomater; 2010 Jul; 6(7):2540-7. PubMed ID: 20060935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum.
    Zhou LL; Sun DP; Hu LY; Li YW; Yang JZ
    J Ind Microbiol Biotechnol; 2007 Jul; 34(7):483-9. PubMed ID: 17440758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.