BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37245829)

  • 1. Quantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite.
    de Francisco P; Amaro F; Martín-González A; Serrano A; Gutiérrez JC
    Sci Total Environ; 2023 Sep; 891():164252. PubMed ID: 37245829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular Response of Adapted and Non-Adapted
    Alonso P; Blas J; Amaro F; de Francisco P; Martín-González A; Gutiérrez JC
    Biology (Basel); 2024 Apr; 13(5):. PubMed ID: 38785768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced in situ Pb(II) passivation by biotransformation into chloropyromorphite during sludge composting.
    Chen Z; Xing R; Yang X; Zhao Z; Liao H; Zhou S
    J Hazard Mater; 2021 Apr; 408():124973. PubMed ID: 33385728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms.
    de Francisco P; Martín-González A; Turkewitz AP; Gutiérrez JC
    PLoS One; 2017; 12(12):e0189076. PubMed ID: 29206858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics study on immobilization of Pb(II) by Penicillium polonicum.
    Li J; Hao R; Zhang J; Shan B; Xu X; Li Y; Ye Y; Xu H
    Fungal Biol; 2022; 126(6-7):449-460. PubMed ID: 35667832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of metallothionein MTT5 from Tetrahymena thermophila.
    Zhou H; Xu J; Wang W
    J Cell Biochem; 2018 Apr; 119(4):3257-3266. PubMed ID: 29091311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium cytotoxicity in Tetrahymena thermophila: New clues about its biological effects and cellular resistance mechanisms.
    Romero I; de Francisco P; Gutiérrez JC; Martín-González A
    Sci Total Environ; 2019 Jun; 671():850-865. PubMed ID: 30947056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite.
    Xie L; Giammar DE
    Environ Sci Technol; 2007 Dec; 41(23):8050-5. PubMed ID: 18186336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila.
    Morón Á; Martín-González A; Díaz S; Gutiérrez JC; Amaro F
    Sci Total Environ; 2022 Nov; 847():157580. PubMed ID: 35882336
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Cheng K; Liu Y; Tang M; Zhang H
    Front Microbiol; 2024; 15():1296512. PubMed ID: 38784799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila.
    Juganson K; Mortimer M; Ivask A; Kasemets K; Kahru A
    Environ Sci Process Impacts; 2013 Jan; 15(1):244-50. PubMed ID: 24592441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periplasmic space is the key location for Pb(II) biomineralization by Burkholderia cepacia.
    He N; Ran M; Hu L; Jiang C; Liu Y
    J Hazard Mater; 2023 Mar; 445():130465. PubMed ID: 36436453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite.
    Scheckel KG; Ryan JA
    Environ Sci Technol; 2002 May; 36(10):2198-204. PubMed ID: 12038830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of amino acids on biomineralization of lead ions by Aspergillus niger.
    Zhang J; Hao R; Shan B; Ye Y; Li J; Lu A
    Water Environ Res; 2023 Sep; 95(9):e10924. PubMed ID: 37650371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events.
    Juganson K; Mortimer M; Ivask A; Pucciarelli S; Miceli C; Orupõld K; Kahru A
    Environ Pollut; 2017 Jun; 225():481-489. PubMed ID: 28318795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes.
    de Francisco P; Martín-González A; Turkewitz AP; Gutiérrez JC
    Environ Microbiol; 2018 Jul; 20(7):2410-2421. PubMed ID: 29687579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glyphosate metabolism in Tetrahymena thermophila: A shotgun proteomic analysis approach.
    Manan A; Roytrakul S; Charoenlappanit S; Poolpak T; Ounjai P; Kruatrachue M; Yang KM; Pokethitiyook P
    Environ Toxicol; 2023 Mar; 38(4):867-882. PubMed ID: 36602419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analyses of early response of unicellular eukaryotic microorganism Tetrahymena thermophila exposed to TiO₂ particles.
    Rajapakse K; Drobne D; Kastelec D; Kogej K; Makovec D; Gallampois C; Amelina H; Danielsson G; Fanedl L; Marinsek-Logar R; Cristobal S
    Nanotoxicology; 2016; 10(5):542-56. PubMed ID: 26524663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead removal from water by a newly isolated Geotrichum candidum LG-8 from Tibet kefir milk and its mechanism.
    Meng L; Li Z; Liu L; Chen X; JunjunWu ; Li W; Zhang X; Dong M
    Chemosphere; 2020 Nov; 259():127507. PubMed ID: 32650171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.