BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37245907)

  • 21. New metal cofactors and recent metallocofactor insights.
    Hausinger RP
    Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the nickel-inserting cyclometallase LarC from Moorella thermoacetica and identification of a cytidinylylated reaction intermediate.
    Turmo A; Hu J; Hausinger RP
    Metallomics; 2022 Mar; 14(3):. PubMed ID: 35225337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nickel pincer model of the active site of lactate racemase involves ligand participation in hydride transfer.
    Xu T; Wodrich MD; Scopelliti R; Corminboeuf C; Hu X
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1242-1245. PubMed ID: 28115700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the LarB-Substrate Complex and Identification of a Reaction Intermediate during Nickel-Pincer Nucleotide Cofactor Biosynthesis.
    Chatterjee S; Nevarez JL; Rankin JA; Hu J; Hausinger RP
    Biochemistry; 2023 Nov; 62(21):3096-3104. PubMed ID: 37831946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system.
    Desguin B; Goffin P; Viaene E; Kleerebezem M; Martin-Diaconescu V; Maroney MJ; Declercq JP; Soumillion P; Hols P
    Nat Commun; 2014 Apr; 5():3615. PubMed ID: 24710389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enantioselective regulation of lactate racemization by LarR in Lactobacillus plantarum.
    Desguin B; Goffin P; Bakouche N; Diman A; Viaene E; Dandoy D; Fontaine L; Hallet B; Hols P
    J Bacteriol; 2015 Jan; 197(1):219-30. PubMed ID: 25349156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-based insights into the mechanism of [4Fe-4S]-dependent sulfur insertase LarE.
    Zecchin P; Pecqueur L; Oltmanns J; Velours C; Schünemann V; Fontecave M; Golinelli-Pimpaneau B
    Protein Sci; 2024 Feb; 33(2):e4874. PubMed ID: 38100250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel-dependent metalloenzymes.
    Boer JL; Mulrooney SB; Hausinger RP
    Arch Biochem Biophys; 2014 Feb; 544():142-52. PubMed ID: 24036122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular and Mechanistic Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis.
    Yamanaka K; Ozaki R; Hamano Y; Oikawa T
    Front Microbiol; 2021; 12():686023. PubMed ID: 34177872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor.
    Harty ML; Sharma AN; Bearne SL
    Metallomics; 2019 Mar; 11(3):707-723. PubMed ID: 30843025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur incorporation into biomolecules: recent advances.
    Chatterjee S; Hausinger RP
    Crit Rev Biochem Mol Biol; 2022; 57(5-6):461-476. PubMed ID: 36403141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo.
    Katane M; Saitoh Y; Uchiyama K; Nakayama K; Saitoh Y; Miyamoto T; Sekine M; Uda K; Homma H
    Genes Cells; 2016 Sep; 21(9):966-77. PubMed ID: 27458110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning, purification, and properties of a cofactor-independent glutamate racemase from Lactobacillus brevis ATCC 8287.
    Yagasaki M; Iwata K; Ishino S; Azuma M; Ozaki A
    Biosci Biotechnol Biochem; 1995 Apr; 59(4):610-4. PubMed ID: 7772825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis.
    Thauer RK; Bonacker LG
    Ciba Found Symp; 1994; 180():210-22; discussion 222-7. PubMed ID: 7842854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Episodic hyperCKaemia may be a feature of α-methylacyl-coenzyme A racemase deficiency.
    Krett B; Straub V; Vissing J
    Eur J Neurol; 2021 Feb; 28(2):729-731. PubMed ID: 33047465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism of propionic acid in animal tissues. IX. Methylmalonyl coenzyme A racemase.
    MAZUMDER R; SASAKAWA T; KAZIRO Y; OCHOA S
    J Biol Chem; 1962 Oct; 237():3065-8. PubMed ID: 13934211
    [No Abstract]   [Full Text] [Related]  

  • 37. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum.
    Goffin P; Deghorain M; Mainardi JL; Tytgat I; Champomier-Vergès MC; Kleerebezem M; Hols P
    J Bacteriol; 2005 Oct; 187(19):6750-61. PubMed ID: 16166538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus.
    Luo S; Ju Y; Zhou J; Gu Q; Xu J; Zhou H
    Int J Biol Macromol; 2019 Aug; 135():725-733. PubMed ID: 31129210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Nickel-Pincer Complex in Lactate Racemase Is an Electron Relay and Sink that acts through Proton-Coupled Electron Transfer.
    Wang B; Shaik S
    Angew Chem Int Ed Engl; 2017 Aug; 56(34):10098-10102. PubMed ID: 28156034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.