These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37245916)

  • 1. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces.
    Cristobal JR; Richard JP
    Methods Enzymol; 2023; 685():95-126. PubMed ID: 37245916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity in transition state binding: the Pauling model revisited.
    Amyes TL; Richard JP
    Biochemistry; 2013 Mar; 52(12):2021-35. PubMed ID: 23327224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe.
    Richard JP; Cristobal JR; Amyes TL
    Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activating oxydianion binding domain for enzyme-catalyzed proton transfer, hydride transfer, and decarboxylation: specificity and enzyme architecture.
    Reyes AC; Zhai X; Morgan KT; Reinhardt CJ; Amyes TL; Richard JP
    J Am Chem Soc; 2015 Jan; 137(3):1372-82. PubMed ID: 25555107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion.
    Tsang WY; Amyes TL; Richard JP
    Biochemistry; 2008 Apr; 47(16):4575-82. PubMed ID: 18376850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme activation through the utilization of intrinsic dianion binding energy.
    Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP
    Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
    Amyes TL; Richard JP
    Biochemistry; 2007 May; 46(19):5841-54. PubMed ID: 17444661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphodianion Activation of Enzymes for Catalysis of Central Metabolic Reactions.
    Fernandez PL; Nagorski RW; Cristobal JR; Amyes TL; Richard JP
    J Am Chem Soc; 2021 Feb; 143(7):2694-2698. PubMed ID: 33560827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for flexible loops in enzyme catalysis.
    Malabanan MM; Amyes TL; Richard JP
    Curr Opin Struct Biol; 2010 Dec; 20(6):702-10. PubMed ID: 20951028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis.
    Cristobal JR; Brandão TAS; Reyes AC; Richard JP
    Biochemistry; 2021 Nov; 60(45):3362-3373. PubMed ID: 34726391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase.
    Zhai X; Amyes TL; Wierenga RK; Loria JP; Richard JP
    Biochemistry; 2013 Aug; 52(34):5928-40. PubMed ID: 23909928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis.
    Richard JP; Amyes TL; Reyes AC
    Acc Chem Res; 2018 Apr; 51(4):960-969. PubMed ID: 29595949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase.
    Richard JP
    Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of orotidine 5'-monophosphate decarboxylase by phosphite dianion: the whole substrate is the sum of two parts.
    Amyes TL; Richard JP; Tait JJ
    J Am Chem Soc; 2005 Nov; 127(45):15708-9. PubMed ID: 16277505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Flexibility and Stiffness Enable Efficient Enzymatic Catalysis.
    Richard JP
    J Am Chem Soc; 2019 Feb; 141(8):3320-3331. PubMed ID: 30703322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.
    Goldman LM; Amyes TL; Goryanova B; Gerlt JA; Richard JP
    J Am Chem Soc; 2014 Jul; 136(28):10156-65. PubMed ID: 24958125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase.
    Richard JP; Amyes TL; Malabanan MM; Zhai X; Kim KJ; Reinhardt CJ; Wierenga RK; Drake EJ; Gulick AM
    Biochemistry; 2016 May; 55(21):3036-47. PubMed ID: 27149328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
    Zhai X; Amyes TL; Richard JP
    J Am Chem Soc; 2015 Dec; 137(48):15185-97. PubMed ID: 26570983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme Architecture: Erection of Active Orotidine 5'-Monophosphate Decarboxylase by Substrate-Induced Conformational Changes.
    Reyes AC; Amyes TL; Richard JP
    J Am Chem Soc; 2017 Nov; 139(45):16048-16051. PubMed ID: 29058891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.