BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37246250)

  • 1. DUPLETS: Deformability-Assisted Dual-Particle Encapsulation Via Electrically Activated Sorting.
    Zhong J; Liang M; Ai Y
    Small Methods; 2023 Sep; 7(9):e2300089. PubMed ID: 37246250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting.
    Zhong J; Liang M; Tang Q; Ai Y
    Mater Today Bio; 2023 Apr; 19():100594. PubMed ID: 36910274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging.
    Chung MT; Núñez D; Cai D; Kurabayashi K
    Lab Chip; 2017 Oct; 17(21):3664-3671. PubMed ID: 28967663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.
    Moon HS; Je K; Min JW; Park D; Han KY; Shin SH; Park WY; Yoo CE; Kim SH
    Lab Chip; 2018 Feb; 18(5):775-784. PubMed ID: 29423464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking through the Poisson Distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection.
    Yue X; Fang X; Sun T; Yi J; Kuang X; Guo Q; Wang Y; Gu H; Xu H
    Biosens Bioelectron; 2022 Sep; 211():114384. PubMed ID: 35609455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds.
    Anyaduba TD; Otoo JA; Schlappi TS
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS.
    Brower KK; Khariton M; Suzuki PH; Still C; Kim G; Calhoun SGK; Qi LS; Wang B; Fordyce PM
    Anal Chem; 2020 Oct; 92(19):13262-13270. PubMed ID: 32900183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput sorting of nanoliter droplets enabled by a sequentially addressable dielectrophoretic array.
    Loo MH; Nakagawa Y; Kim SH; Isozaki A; Goda K
    Electrophoresis; 2022 Feb; 43(3):477-486. PubMed ID: 34599837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High precision, high throughput generation of droplets containing single cells.
    Zhou J; Wei A; Bertsch A; Renaud P
    Lab Chip; 2022 Dec; 22(24):4841-4848. PubMed ID: 36416090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceeding 80% Efficiency of Single-Bead Encapsulation in Microdroplets through Hydrogel Coating-Assisted Close-Packed Ordering.
    Chen L; Zhao Y; Li J; Xiong C; Xu Y; Tang C; Zhang R; Zhang J; Mi X; Liu Y
    Anal Chem; 2023 Jun; 95(23):8889-8897. PubMed ID: 37233805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic Braille valve platform for on-demand production, combinatorial screening and sorting of chemically distinct droplets.
    Utharala R; Grab A; Vafaizadeh V; Peschke N; Ballinger M; Turei D; Tuechler N; Ma W; Ivanova O; Ortiz AG; Saez-Rodriguez J; Merten CA
    Nat Protoc; 2022 Dec; 17(12):2920-2965. PubMed ID: 36261631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Interface-Particle Interaction Approach for Evaluation of the Co-Encapsulation Efficiency of Cells in a Flow-Focusing Droplet Generator.
    Yaghoobi M; Saidi MS; Ghadami S; Kashaninejad N
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free single-cell analysis in microdroplets using a light-scattering-based optofluidic chip.
    Liang L; Liang M; Zuo Z; Ai Y
    Biosens Bioelectron; 2024 Jun; 253():116148. PubMed ID: 38428071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells.
    Chabert M; Viovy JL
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3191-6. PubMed ID: 18316742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform.
    Navi M; Abbasi N; Jeyhani M; Gnyawali V; Tsai SSH
    Lab Chip; 2018 Nov; 18(22):3361-3370. PubMed ID: 30375625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.