BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37246265)

  • 41. The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation.
    Xu H; Sommer S; Broge NLN; Gao J; Iversen BB
    Chemistry; 2019 Feb; 25(8):2051-2058. PubMed ID: 30480850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions.
    Kampouri S; Ebrahim FM; Fumanal M; Nord M; Schouwink PA; Elzein R; Addou R; Herman GS; Smit B; Ireland CP; Stylianou KC
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14239-14247. PubMed ID: 33749235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Template-Directed Approach Towards the Realization of Ordered Heterogeneity in Bimetallic Metal-Organic Frameworks.
    Kim D; Coskun A
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):5071-5076. PubMed ID: 28370921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Ti
    Yuan S; Qin JS; Xu HQ; Su J; Rossi D; Chen Y; Zhang L; Lollar C; Wang Q; Jiang HL; Son DH; Xu H; Huang Z; Zou X; Zhou HC
    ACS Cent Sci; 2018 Jan; 4(1):105-111. PubMed ID: 29392182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. General Synthesis of MOF Nanotubes via Hydrogen-Bonded Organic Frameworks toward Efficient Hydrogen Evolution Electrocatalysts.
    Cai ZX; Xia Y; Ito Y; Ohtani M; Sakamoto H; Ito A; Bai Y; Wang ZL; Yamauchi Y; Fujita T
    ACS Nano; 2022 Dec; 16(12):20851-20864. PubMed ID: 36458840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Stable Fe/Co-TPY-MIL-88(NH
    Jiang Q; Xiao Y; Hong AN; Shen Y; Li Z; Feng P; Zhong W
    ACS Sens; 2023 Apr; 8(4):1658-1666. PubMed ID: 36945081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Competitive formation between 2D and 3D metal-organic frameworks: insights into the selective formation and lamination of a 2D MOF.
    Oh S; Park J; Oh M
    IUCrJ; 2019 Jul; 6(Pt 4):681-687. PubMed ID: 31316811
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Systematic Thiol Decoration in a Redox-Active UiO-66-(SH)
    Chowdhury S; Sharma P; Kundu K; Das PP; Rathi P; Siril PF
    Inorg Chem; 2023 Mar; 62(9):3875-3885. PubMed ID: 36802595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Complexity of Comparative Adsorption of C
    Jansen C; Assahub N; Spieß A; Liang J; Schmitz A; Xing S; Gökpinar S; Janiak C
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Universal Strategy for Metal-Organic Framework Growth: From Cascading-Functional Films to MOF-on-MOFs.
    Zheng J; Chen L; Kuang Y; Ouyang G
    Small; 2024 Mar; ():e2307976. PubMed ID: 38462955
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks.
    Zhao YL; Liu L; Zhang W; Sue CH; Li Q; Miljanić OS; Yaghi OM; Stoddart JF
    Chemistry; 2009 Dec; 15(48):13356-80. PubMed ID: 19946906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structured Growth of Metal-Organic Framework MIL-53(Al) from Solid Aluminum Carbide Precursor.
    Moran CM; Joshi JN; Marti RM; Hayes SE; Walton KS
    J Am Chem Soc; 2018 Jul; 140(29):9148-9153. PubMed ID: 29920076
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks.
    Guillerm V; Eddaoudi M
    Acc Chem Res; 2021 Sep; 54(17):3298-3312. PubMed ID: 34227389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation.
    Manna K; Zhang T; Greene FX; Lin W
    J Am Chem Soc; 2015 Feb; 137(7):2665-73. PubMed ID: 25640998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. UiO-66-NH
    Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal organic frameworks decorated with free carboxylic acid groups: topology, metal capture and dye adsorption properties.
    Ahamad MN; Khan MS; Shahid M; Ahmad M
    Dalton Trans; 2020 Oct; 49(41):14690-14705. PubMed ID: 33064787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks.
    Huang H; Li JR; Wang K; Han T; Tong M; Li L; Xie Y; Yang Q; Liu D; Zhong C
    Nat Commun; 2015 Nov; 6():8847. PubMed ID: 26548441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased production of H
    Hou W; Chen M; Chen C; Wang Y; Xu Y
    J Colloid Interface Sci; 2021 Dec; 604():310-318. PubMed ID: 34265688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron-Donor Functional Groups, Band Gap Tailoring, and Efficient Charge Separation: Three Keys To Improve the Gaseous Iodine Uptake in MOF Materials.
    Andrade PHM; Ahouari H; Volkringer C; Loiseau T; Vezin H; Hureau M; Moissette A
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):31032-31048. PubMed ID: 37315191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.