These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37246507)

  • 1. Electrostatic Modulation of Intramolecular and Intermolecular Interactions during the Formation of an Amyloid-like Assembly.
    Pillai M; Das A; Jha SK
    Biochemistry; 2023 Jun; 62(12):1890-1905. PubMed ID: 37246507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer.
    Pillai M; Jha SK
    Biochemistry; 2019 Feb; 58(6):608-620. PubMed ID: 30520297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic modulation of folding and aggregation energy landscape by DNA binding of functional domains of TDP-43.
    Patni D; Jha SK
    Biochim Biophys Acta Proteins Proteom; 2023 Jul; 1871(4):140916. PubMed ID: 37061152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Metastable Assembly during the Stress-Induced Formation of Worm-like Amyloid Fibrils of Nucleic Acid Binding Domains of TDP-43.
    Pillai M; Jha SK
    Biochemistry; 2020 Jan; 59(3):315-328. PubMed ID: 31898895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation-Deprotonation Switch Controls the Amyloid-like Misfolding of Nucleic-Acid-Binding Domains of TDP-43.
    Patni D; Jha SK
    J Phys Chem B; 2021 Aug; 125(30):8383-8394. PubMed ID: 34318672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment.
    Austerberry JI; Dajani R; Panova S; Roberts D; Golovanov AP; Pluen A; van der Walle CF; Uddin S; Warwicker J; Derrick JP; Curtis R
    Eur J Pharm Biopharm; 2017 Jun; 115():18-30. PubMed ID: 28161552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Principle for Understanding the Combined Cellular Protein Folding and Aggregation.
    Choi SI
    Curr Protein Pept Sci; 2020; 21(1):3-21. PubMed ID: 31345145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different Intermolecular Interactions Drive Nonpathogenic Liquid-Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43.
    Zeng YT; Bi LL; Zhuo XF; Yang LY; Sun B; Lu JX
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming electrostatic repulsions during amyloid assembly: Effect of pH and interaction with divalent metals using model peptides.
    Diaz-Espinoza R; Nova E; Monasterio O
    Arch Biochem Biophys; 2017 May; 621():46-53. PubMed ID: 28288797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonspecific shielding of unfavorable electrostatic intramolecular interactions in the erythropoietin native-state increase conformational stability and limit non-native aggregation.
    Banks DD
    Protein Sci; 2015 May; 24(5):803-11. PubMed ID: 25628168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain.
    Babinchak WM; Haider R; Dumm BK; Sarkar P; Surewicz K; Choi JK; Surewicz WK
    J Biol Chem; 2019 Apr; 294(16):6306-6317. PubMed ID: 30814253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-based Prediction of the Cellular Toxicity Associated with Amyloid Aggregation within Protein Condensates.
    Horvath A; Vendruscolo M; Fuxreiter M
    Biochemistry; 2022 Nov; 61(22):2461-2469. PubMed ID: 36341999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of an aggregation-prone partially folded state of human profilin-1 correlates with aggregation propensity.
    Del Poggetto E; Toto A; Aloise C; Di Piro F; Gori L; Malatesta F; Gianni S; Chiti F; Bemporad F
    J Biol Chem; 2018 Jun; 293(26):10303-10313. PubMed ID: 29760185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct aggregation pathways in transthyretin misfolding and amyloid formation.
    Dasari AKR; Hung I; Gan Z; Lim KH
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):344-349. PubMed ID: 30366153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation.
    Pras A; Houben B; Aprile FA; Seinstra R; Gallardo R; Janssen L; Hogewerf W; Gallrein C; De Vleeschouwer M; Mata-Cabana A; Koopman M; Stroo E; de Vries M; Louise Edwards S; Kirstein J; Vendruscolo M; Falsone SF; Rousseau F; Schymkowitz J; Nollen EAA
    EMBO J; 2021 Nov; 40(21):e107568. PubMed ID: 34617299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation.
    Matthes D; Gapsys V; Griesinger C; de Groot BL
    ACS Chem Neurosci; 2017 Dec; 8(12):2791-2808. PubMed ID: 28906103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model.
    Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A
    J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of intramolecular and intermolecular electrostatic repulsions on the stability and aggregation of NISTmAb revealed by HDX-MS, DSC, and nanoDSF.
    Hamuro Y; Derebe MG; Venkataramani S; Nemeth JF
    Protein Sci; 2021 Aug; 30(8):1686-1700. PubMed ID: 34060159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.