These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37246552)
1. Enhanced NH He X; Chen W; Sun F; Jiang Z; Li B; Li XY; Lin L Environ Sci Technol; 2023 Jun; 57(23):8828-8838. PubMed ID: 37246552 [TBL] [Abstract][Full Text] [Related]
2. Enhancing selective NH Hou C; Wu H; Zhou Z; Peng S; Wu K; Wang Y; Xu L; Chen Z; Lei Z; Wu D Water Res; 2025 Jan; 268(Pt A):122589. PubMed ID: 39405629 [TBL] [Abstract][Full Text] [Related]
3. Selective Ammonium Removal from Synthetic Wastewater by Flow-Electrode Capacitive Deionization Using a Novel K Lin L; Hu J; Liu J; He X; Li B; Li XY Environ Sci Technol; 2020 Oct; 54(19):12723-12731. PubMed ID: 32926784 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Fractionation, Desalination, and Dye Removal of Dye/Salt Mixtures by Carbon Cloth-Modified Flow-electrode Capacitive Deionization. Tang K; Zheng H; Du P; Zhou K Environ Sci Technol; 2022 Jun; 56(12):8885-8896. PubMed ID: 35658453 [TBL] [Abstract][Full Text] [Related]
5. Selective capture of ammonium ions from municipal wastewater treatment plant effluent with a nickel hexacyanoferrate electrode. Tsai SW; Cuong DV; Hou CH Water Res; 2022 Aug; 221():118786. PubMed ID: 35779455 [TBL] [Abstract][Full Text] [Related]
6. Separation of nutrients and acetate from sewage sludge fermentation liquid in flow-electrode capacitive deionization system: Competitive mechanisms of ions and influence of activated carbon. Sun H; Zhang X; Cui M; Liu G; Liu H; Huang S; Ghasimi DSM; Liu H Bioresour Technol; 2023 Dec; 390():129864. PubMed ID: 37839646 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water. Zhang X; Pang M; Wei Y; Liu F; Zhang H; Zhou H Water Res; 2024 Mar; 251():121147. PubMed ID: 38277832 [TBL] [Abstract][Full Text] [Related]
8. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Ma J; He C; He D; Zhang C; Waite TD Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621 [TBL] [Abstract][Full Text] [Related]
9. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater. Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902 [TBL] [Abstract][Full Text] [Related]
10. Flow-electrode capacitive deionization: A review and new perspectives. Yang F; He Y; Rosentsvit L; Suss ME; Zhang X; Gao T; Liang P Water Res; 2021 Jul; 200():117222. PubMed ID: 34029869 [TBL] [Abstract][Full Text] [Related]
11. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization. Shi C; Wang H; Li A; Zhu G; Zhao X; Wu F Water Res; 2023 Feb; 230():119517. PubMed ID: 36608524 [TBL] [Abstract][Full Text] [Related]
12. Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization. Xiang S; Mao H; Geng W; Xu Y; Zhou H J Hazard Mater; 2022 Jun; 431():128591. PubMed ID: 35247739 [No Abstract] [Full Text] [Related]
13. Ammonium removal from high-strength aqueous solutions by Australian zeolite. Wijesinghe DT; Dassanayake KB; Sommer SG; Jayasinghe GY; J Scales P; Chen D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(8):614-25. PubMed ID: 27050255 [TBL] [Abstract][Full Text] [Related]
14. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Huang SY; Fan CS; Hou CH J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658 [TBL] [Abstract][Full Text] [Related]
15. pH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization. Bian Y; Chen X; Ren ZJ Environ Sci Technol; 2020 Jul; 54(14):9116-9123. PubMed ID: 32584558 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization. Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460 [TBL] [Abstract][Full Text] [Related]
17. Single modular flow-electrode capacitive deionization using modified Prussian blue analogues as cation intercalation electrode for continuous water desalination. Zhao Y; Fan X; Song T; Leng B; Qin Y; Qian G Environ Sci Pollut Res Int; 2024 Aug; 31(36):49358-49371. PubMed ID: 39068614 [TBL] [Abstract][Full Text] [Related]
18. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field. Xu L; Peng S; Wu K; Tang L; Wu M; Zong Y; Mao Y; Wu D Water Res; 2022 Aug; 222():118963. PubMed ID: 35970008 [TBL] [Abstract][Full Text] [Related]
19. Mineral sorbents for ammonium recycling from industry to agriculture. Shinzato MC; Wu LF; Mariano TO; Freitas JG; Martins TS Environ Sci Pollut Res Int; 2020 Apr; 27(12):13599-13616. PubMed ID: 32030588 [TBL] [Abstract][Full Text] [Related]
20. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). Zhang C; Wang M; Xiao W; Ma J; Sun J; Mo H; Waite TD Water Res; 2021 Feb; 189():116653. PubMed ID: 33232816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]