BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37246723)

  • 1. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy II. Cellular dose enhancement within macroscopic tumor models.
    Martinov MP; Fletcher EM; Thomson RM
    Med Phys; 2023 Sep; 50(9):5842-5852. PubMed ID: 37246723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric consequences of gold nanoparticle clustering during photon irradiation.
    Kirkby C; Koger B; Suchowerska N; McKenzie DR
    Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the importance of modeling gold nanoparticles distribution in dose-enhanced radiotherapy.
    Rasouli FS; Masoudi SF; Asadi S
    Int J Nanomedicine; 2019; 14():5865-5874. PubMed ID: 31534328
    [No Abstract]   [Full Text] [Related]  

  • 6. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.
    Lin Y; Paganetti H; McMahon SJ; Schuemann J
    Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.
    Liu R; Zhao T; Zhao X; Reynoso FJ
    Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy.
    Reynoso FJ; Manohar N; Krishnan S; Cho SH
    Med Phys; 2014 Oct; 41(10):101709. PubMed ID: 25281948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy optimization in gold nanoparticle enhanced radiation therapy.
    Sung W; Schuemann J
    Phys Med Biol; 2018 Jun; 63(13):135001. PubMed ID: 29873303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for converting dose-to-medium to dose-to-tissue in Monte Carlo studies of gold nanoparticle-enhanced radiotherapy.
    Koger B; Kirkby C
    Phys Med Biol; 2016 Mar; 61(5):2014-24. PubMed ID: 26895030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams.
    Rudek B; McNamara A; Ramos-Méndez J; Byrne H; Kuncic Z; Schuemann J
    Phys Med Biol; 2019 Aug; 64(17):175005. PubMed ID: 31295730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SU-E-T-10: Monte Carlo Study of the Dose Enhancement Factor (DEF) for Gold Nano-Particle (GNP) on the Cellular Level.
    Zhang M; Qin S; Haffty B; Yue N
    Med Phys; 2012 Jun; 39(6Part9):3704. PubMed ID: 28519059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation.
    Lin Y; McMahon SJ; Scarpelli M; Paganetti H; Schuemann J
    Phys Med Biol; 2014 Dec; 59(24):7675-89. PubMed ID: 25415297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 2: A treatment planning study.
    Strigari L; Ferrero V; Visonà G; Dalmasso F; Gobbato A; Cerello P; Visentin S; Attili A
    Med Phys; 2017 May; 44(5):1993-2001. PubMed ID: 28236658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo Evaluation of Dose Enhancement Due to CuATSM or GNP Uptake in Hypoxic Environments with External Beam Radiation.
    Martinez S; Brandl A; Leary D
    Int J Nanomedicine; 2020; 15():3719-3727. PubMed ID: 32547024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.