These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37247262)

  • 1. Mechanistic insights into the ROS-mediated inactivation of human aldehyde oxidase.
    Esmaeeli M; Nimtz M; Jänsch L; Ruddock LW; Leimkühler S
    FEBS Lett; 2023 Jul; 597(13):1792-1801. PubMed ID: 37247262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Inactivation of Human Aldehyde Oxidase 1 by Hydrogen Peroxide and Superoxide.
    Garrido C; Leimkühler S
    Drug Metab Dispos; 2021 Sep; 49(9):729-735. PubMed ID: 34183377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Human Aldehyde Oxidase by Small Sulfhydryl-Containing Reducing Agents.
    Esmaeeli M; Nimtz M; Jänsch L; Ruddock LW; Leimkühler S
    Drug Metab Dispos; 2023 Jun; 51(6):764-770. PubMed ID: 37012073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase.
    Foti A; Dorendorf F; Leimkühler S
    PLoS One; 2017; 12(7):e0182061. PubMed ID: 28750088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human aldehyde oxidase (hAOX1): structure determination of the Moco-free form of the natural variant G1269R and biophysical studies of single nucleotide polymorphisms.
    Mota C; Esmaeeli M; Coelho C; Santos-Silva T; Wolff M; Foti A; Leimkühler S; Romão MJ
    FEBS Open Bio; 2019 May; 9(5):925-934. PubMed ID: 30985987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid.
    Yesbergenova Z; Yang G; Oron E; Soffer D; Fluhr R; Sagi M
    Plant J; 2005 Jun; 42(6):862-76. PubMed ID: 15941399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldehyde oxidase; new approaches to old problems.
    Beedham C
    Xenobiotica; 2020 Jan; 50(1):34-50. PubMed ID: 31149862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell biology of molybdenum.
    Mendel RR; Bittner F
    Biochim Biophys Acta; 2006 Jul; 1763(7):621-35. PubMed ID: 16784786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues.
    Kundu TK; Hille R; Velayutham M; Zweier JL
    Arch Biochem Biophys; 2007 Apr; 460(1):113-21. PubMed ID: 17353002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdoenzymes and molybdenum cofactor in plants.
    Mendel RR; Hänsch R
    J Exp Bot; 2002 Aug; 53(375):1689-98. PubMed ID: 12147719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of single nucleotide polymorphisms on human aldehyde oxidase.
    Hartmann T; Terao M; Garattini E; Teutloff C; Alfaro JF; Jones JP; Leimkühler S
    Drug Metab Dispos; 2012 May; 40(5):856-64. PubMed ID: 22279051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen peroxide metabolism and functions in plants.
    Smirnoff N; Arnaud D
    New Phytol; 2019 Feb; 221(3):1197-1214. PubMed ID: 30222198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A guide to genetically encoded tools for the study of H
    Smolyarova DD; Podgorny OV; Bilan DS; Belousov VV
    FEBS J; 2022 Sep; 289(18):5382-5395. PubMed ID: 34173331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
    Lauterbach L; Lenz O
    J Am Chem Soc; 2013 Nov; 135(47):17897-905. PubMed ID: 24180286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging short-lived reactive oxygen species (ROS) with endogenous contrast MRI.
    Tain RW; Scotti AM; Li W; Zhou XJ; Cai K
    J Magn Reson Imaging; 2018 Jan; 47(1):222-229. PubMed ID: 28503732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of caffeine- and Ins(1,4,5)P3-induced contractions to oxidants in permeabilized vascular smooth muscle.
    Wada S; Okabe E
    Eur J Pharmacol; 1997 Feb; 320(1):51-9. PubMed ID: 9049602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana.
    Schwartz SH; Léon-Kloosterziel KM; Koornneef M; Zeevaart JA
    Plant Physiol; 1997 May; 114(1):161-6. PubMed ID: 9159947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.