BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37247322)

  • 1. The Efficacy of Nanoparticle Delivery to Hypoxic Solid Tumors by ciRGD Co-Administration Depends on Neuropilin-1 and Neutrophil Levels.
    Izci M; Maksoudian C; Gonçalves F; Pérez Gilabert I; Rios Luci C; Bolea-Fernandez E; Vanhaecke F; Manshian BB; Soenen SJ
    Adv Healthc Mater; 2023 Sep; 12(24):e2300594. PubMed ID: 37247322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptosome Coadministration Improves Nanoparticle Delivery to Tumors through NRP1-Mediated Co-Endocytosis.
    Xiang Z; Jiang G; Yang X; Fan D; Nan X; Li D; Hu Z; Fang Q
    Biomolecules; 2019 May; 9(5):. PubMed ID: 31060320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle delivery to solid tumors: a multiparametric study on particle size and the tumor microenvironment.
    Izci M; Maksoudian C; Gonçalves F; Aversa L; Salembier R; Sargsian A; Pérez Gilabert I; Chu T; Rios Luci C; Bolea-Fernandez E; Nittner D; Vanhaecke F; Manshian BB; Soenen SJ
    J Nanobiotechnology; 2022 Dec; 20(1):518. PubMed ID: 36494816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.
    Glass SB; Gonzalez-Fajardo L; Beringhs AO; Lu X
    Antioxid Redox Signal; 2019 Feb; 30(5):747-761. PubMed ID: 28990403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining two strategies to improve perfusion and drug delivery in solid tumors.
    Stylianopoulos T; Jain RK
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18632-7. PubMed ID: 24167277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted polymeric nanoparticles for drug delivery to hypoxic, triple-negative breast tumors.
    Mamnoon B; Loganathan J; Confeld MI; De Fonseka N; Feng L; Froberg J; Choi Y; Tuvin DM; Sathish V; Mallik S
    ACS Appl Bio Mater; 2021 Feb; 4(2):1450-1460. PubMed ID: 33954285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced tumor uptake and activity of nanoplex-loaded doxorubicin.
    Zhao N; Leng Q; Woodle MC; Mixson AJ
    Biochem Biophys Res Commun; 2019 May; 513(1):242-247. PubMed ID: 30954222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of the heterogeneous distributions of nanomedicines in solid tumors.
    He H; Liu C; Liu Y; Liu X; Wu Y; Fan J; Zhao L; Cao Y
    Eur J Pharm Biopharm; 2019 Sep; 142():153-164. PubMed ID: 31226367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review.
    Kumari R; Sunil D; Ningthoujam RS
    J Control Release; 2020 Mar; 319():135-156. PubMed ID: 31881315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle - Berberine complexes in a mouse model.
    Sreeja S; Krishnan Nair CK
    Life Sci; 2018 Feb; 195():71-80. PubMed ID: 29289560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy.
    Xie Z; Guo W; Guo N; Huangfu M; Liu H; Lin M; Xu W; Chen J; Wang T; Wei Q; Han M; Gao J
    Acta Biomater; 2018 Apr; 71():351-362. PubMed ID: 29545193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding.
    Kashkooli FM; Rezaeian M; Soltani M
    Nanomedicine (Lond); 2022 Apr; 17(10):695-716. PubMed ID: 35451315
    [No Abstract]   [Full Text] [Related]  

  • 14. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment.
    Kang T; Zhu Q; Jiang D; Feng X; Feng J; Jiang T; Yao J; Jing Y; Song Q; Jiang X; Gao X; Chen J
    Biomaterials; 2016 Sep; 101():60-75. PubMed ID: 27267628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quinic Acid-Conjugated Nanoparticles Enhance Drug Delivery to Solid Tumors via Interactions with Endothelial Selectins.
    Xu J; Lee SS; Seo H; Pang L; Jun Y; Zhang RY; Zhang ZY; Kim P; Lee W; Kron SJ; Yeo Y
    Small; 2018 Dec; 14(50):e1803601. PubMed ID: 30411856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Targeting of Cancers with Nanotherapeutics.
    Foster C; Watson A; Kaplinsky J; Kamaly N
    Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors.
    Wu Y; Ding L; Zheng C; Li H; Wu M; Sun Y; Liu X; Zhang X; Zeng Y
    Acta Biomater; 2022 Nov; 153():419-430. PubMed ID: 36115655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies of engineering nanomedicines for tumor retention.
    Qian X; Xu X; Wu Y; Wang J; Li J; Chen S; Wen J; Li Y; Zhang Z
    J Control Release; 2022 Jun; 346():193-211. PubMed ID: 35447297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted nanoparticulate drug-delivery systems for treatment of solid tumors: a review.
    Bhattacharjee H; Balabathula P; Wood GC
    Ther Deliv; 2010 Nov; 1(5):713-34. PubMed ID: 22833959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.