These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37247440)
1. In-situ advanced oxidation of sediment iron for sulfide control in sewers. Liu Y; Zuo Z; Li H; Xing Y; Cheng D; Guo M; Liu T; Zheng M; Yuan Z; Huang X Water Res; 2023 Jul; 240():120077. PubMed ID: 37247440 [TBL] [Abstract][Full Text] [Related]
2. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers. Cao J; Zhang L; Hong J; Sun J; Jiang F Water Res; 2019 Nov; 164():114914. PubMed ID: 31400595 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers. Lin HW; Kustermans C; Vaiopoulou E; Prévoteau A; Rabaey K; Yuan Z; Pikaar I Water Res; 2017 Jul; 118():114-120. PubMed ID: 28419895 [TBL] [Abstract][Full Text] [Related]
4. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage. Liang S; Zhang L; Jiang F Water Res; 2016 Sep; 100():421-428. PubMed ID: 27232986 [TBL] [Abstract][Full Text] [Related]
5. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. Zhang Z; Chang N; Wang S; Lu J; Li K; Zheng C Sci Total Environ; 2022 Feb; 808():152203. PubMed ID: 34890666 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115 [TBL] [Abstract][Full Text] [Related]
7. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing. Ganigué R; Jiang G; Liu Y; Sharma K; Wang YC; Gonzalez J; Nguyen T; Yuan Z Water Res; 2018 May; 135():302-310. PubMed ID: 29477793 [TBL] [Abstract][Full Text] [Related]
8. A biological strategy for sulfide control in sewers: Removing sulfide by sulfur-oxidizing bacteria. Yuan X; Sun Y; Ni D; Xie Z; Zhang Y; Miao S; Wu L; Xing X; Zuo J J Environ Manage; 2023 Dec; 348():119237. PubMed ID: 37832290 [TBL] [Abstract][Full Text] [Related]
9. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Liu Y; Sharma KR; Ni BJ; Fan L; Murthy S; Tyson GQ; Yuan Z Water Res; 2015 May; 74():155-65. PubMed ID: 25727155 [TBL] [Abstract][Full Text] [Related]
10. Control sulfide and methane production in sewers based on free ammonia inactivation. Zuo Z; Song Y; Ren D; Li H; Gao Y; Yuan Z; Huang X; Zheng M; Liu Y Environ Int; 2020 Oct; 143():105928. PubMed ID: 32673907 [TBL] [Abstract][Full Text] [Related]
11. Iron carbon particle dosing for odor control in sewers: Laboratory tests. Yongchao Z; Lei T; Wenming Z; Yiping Z; Lei F; Tuqiao Z Environ Res; 2023 Jan; 216(Pt 1):114476. PubMed ID: 36202246 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the oxidation inhibition of sulfide in urban sewers using a novel quantitative method. Shi X; Tian J; Kang L; Ren B; Jin X; Wang XC; Jin P Chemosphere; 2022 Jun; 296():133958. PubMed ID: 35176294 [TBL] [Abstract][Full Text] [Related]
13. Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. Kulandaivelu J; Gao J; Song Y; Shrestha S; Li X; Li J; Doederer K; Keller J; Yuan Z; Mueller JF; Jiang G Environ Sci Technol; 2019 Jun; 53(11):6245-6254. PubMed ID: 31067854 [TBL] [Abstract][Full Text] [Related]
14. Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. Pikaar I; Flugen M; Lin HW; Salehin S; Li J; Donose BC; Dennis PG; Bethke L; Johnson I; Rabaey K; Yuan Z Water Res; 2019 Dec; 167():115032. PubMed ID: 31546029 [TBL] [Abstract][Full Text] [Related]
15. Full-scale investigation of ferrous dosing in sewers and a wastewater treatment plant for multiple benefits. Kulandaivelu J; Shrestha S; Khan W; Dwyer J; Steward A; Bell L; Mcphee P; Smith P; Hu S; Yuan Z; Jiang G Chemosphere; 2020 Jul; 250():126221. PubMed ID: 32114337 [TBL] [Abstract][Full Text] [Related]
16. Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Zuo Z; Xing Y; Duan H; Ren D; Zheng M; Liu Y; Huang X Water Res; 2023 May; 234():119820. PubMed ID: 36889087 [TBL] [Abstract][Full Text] [Related]
17. Sulfide and methane production in sewer sediments: Field survey and model evaluation. Liu Y; Tugtas AE; Sharma KR; Ni BJ; Yuan Z Water Res; 2016 Feb; 89():142-50. PubMed ID: 26650449 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge. Yin R; Peng J; Sun J; Li C; Xia D; Shang C Water Res; 2021 Sep; 203():117557. PubMed ID: 34418644 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous use of nitrate and calcium peroxide to control sulfide and greenhouse gas emission in sewers. Zhang G; Wang G; Zhou Y; Zhu DZ; Zhang Y; Zhang T Sci Total Environ; 2023 Jan; 855():158913. PubMed ID: 36411604 [TBL] [Abstract][Full Text] [Related]
20. Enhanced mechanistic insights and performance optimization: Controlling methane and sulfide in sewers using nitrate dosing strategies. Chen Y; Xing Y; Zuo Z; Jiang G; Min H; Tang D; Liang P; Huang X; Liu Y Sci Total Environ; 2024 Jan; 907():167580. PubMed ID: 37832662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]