These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37247440)
21. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers. Zuo Z; Ren D; Qiao L; Li H; Huang X; Liu Y Water Res; 2021 Sep; 203():117494. PubMed ID: 34412021 [TBL] [Abstract][Full Text] [Related]
22. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor. Mohanakrishnan J; Gutierrez O; Meyer RL; Yuan Z Water Res; 2008 Aug; 42(14):3961-71. PubMed ID: 18675440 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments. Ren D; Zuo Z; Xing Y; Ji P; Yu T; Zhu D; Liu Y; Huang X Water Res; 2022 Mar; 211():118010. PubMed ID: 35021123 [TBL] [Abstract][Full Text] [Related]
24. Nitrite-dependent microbial utilization for simultaneous removal of sulfide and methane in sewers. Zuo Z; Xing Y; Lu X; Liu T; Zheng M; Guo M; Liu Y; Huang X Water Res X; 2024 Sep; 24():100231. PubMed ID: 39070728 [TBL] [Abstract][Full Text] [Related]
25. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Gutierrez O; Park D; Sharma KR; Yuan Z Water Res; 2010 Jun; 44(11):3467-75. PubMed ID: 20434190 [TBL] [Abstract][Full Text] [Related]
26. A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. Rebosura M; Salehin S; Pikaar I; Sun X; Keller J; Sharma K; Yuan Z Water Res; 2018 Dec; 146():109-117. PubMed ID: 30241044 [TBL] [Abstract][Full Text] [Related]
27. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia. Jiang G; Keating A; Corrie S; O'halloran K; Nguyen L; Yuan Z Water Res; 2013 Sep; 47(13):4331-9. PubMed ID: 23764584 [TBL] [Abstract][Full Text] [Related]
28. Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Firer D; Friedler E; Lahav O Sci Total Environ; 2008 Mar; 392(1):145-56. PubMed ID: 18158171 [TBL] [Abstract][Full Text] [Related]
29. Peracetic acid activated by ferrous ion mitigates sulfide and methane production in rising main sewers. Liu S; Guo H; Wang Y; Hou J; Zhu T; Liu Y Water Res; 2023 Oct; 245():120584. PubMed ID: 37713794 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of sulfide precipitation with ferrous and ferric iron in wastewater. Kiilerich B; Nielsen AH; Vollertsen J Water Sci Technol; 2018 Oct; 78(5-6):1071-1081. PubMed ID: 30339532 [TBL] [Abstract][Full Text] [Related]
31. Experimental and modeling investigations on the unexpected hydrogen sulfide rebound in a sewer receiving nitrate addition: Mechanism and solution. Liang Z; Wu D; Li G; Sun J; Jiang F; Li Y J Environ Sci (China); 2023 Mar; 125():630-640. PubMed ID: 36375945 [TBL] [Abstract][Full Text] [Related]
32. Hydrogen sulphide control in sewers by catalysing the reaction with oxygen. Rathnayake D; Sathasivan A; Kastl G; Bal Krishna KC Sci Total Environ; 2019 Nov; 689():1192-1200. PubMed ID: 31466159 [TBL] [Abstract][Full Text] [Related]
33. A critical review of chemical uses in urban sewer systems. Cen X; Li J; Jiang G; Zheng M Water Res; 2023 Jul; 240():120108. PubMed ID: 37257296 [TBL] [Abstract][Full Text] [Related]
34. Nitrite production from urine for sulfide control in sewers. Zheng M; Zuo Z; Zhang Y; Cui Y; Dong Q; Liu Y; Huang X; Yuan Z Water Res; 2017 Oct; 122():447-454. PubMed ID: 28624728 [TBL] [Abstract][Full Text] [Related]
35. Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. Rebosura M; Salehin S; Pikaar I; Kulandaivelu J; Jiang G; Keller J; Sharma K; Yuan Z Water Res; 2020 Mar; 171():115396. PubMed ID: 31877476 [TBL] [Abstract][Full Text] [Related]
36. Hydrogen sulfide control in sewer systems: A critical review of recent progress. Zhang L; Qiu YY; Sharma KR; Shi T; Song Y; Sun J; Liang Z; Yuan Z; Jiang F Water Res; 2023 Jul; 240():120046. PubMed ID: 37224665 [TBL] [Abstract][Full Text] [Related]
37. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Zhang L; De Schryver P; De Gusseme B; De Muynck W; Boon N; Verstraete W Water Res; 2008 Jan; 42(1-2):1-12. PubMed ID: 17692889 [TBL] [Abstract][Full Text] [Related]
38. Multifaceted benefits of magnesium hydroxide dosing in sewer systems: Impacts on downstream wastewater treatment processes. Cen X; Duan H; Hu Z; Huang X; Li J; Yuan Z; Zheng M Water Res; 2023 Dec; 247():120788. PubMed ID: 37924683 [TBL] [Abstract][Full Text] [Related]
39. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Yan X; Sun J; Kenjiahan A; Dai X; Ni BJ; Yuan Z Water Res; 2020 Feb; 169():115208. PubMed ID: 31670088 [TBL] [Abstract][Full Text] [Related]
40. Impact of reduced water consumption on sulfide and methane production in rising main sewers. Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]