These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37247675)

  • 1. Machine learning approach to predict the biofuel production via biomass gasification and natural gas integrating to develop a low-carbon and environmental-friendly design: Thermodynamic-conceptual assessment.
    Xia J; Yan G; Abed AM; Nag K; Galal AM; Deifalla A; Li J
    Chemosphere; 2023 Sep; 336():138985. PubMed ID: 37247675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An innovative biomass-driven energy systems for green energy and freshwater production with less CO2 emission: Environmental and technical approaches.
    Bai Y; Lin H; M Abed A; Fayed M; Mahariq I; Salah B; Saleem W; Deifalla A
    Chemosphere; 2023 Sep; 334():139008. PubMed ID: 37230303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models.
    Khandelwal K; Dalai AK
    Molecules; 2024 May; 29(10):. PubMed ID: 38792198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical design of an innovative biomass/gasification-driven power plant with heat recovery hybrid system: CO
    Wang Y; Xu H; Li Y; Lin N; Xu P
    Chemosphere; 2023 Nov; 340():139818. PubMed ID: 37586484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentrating-solar biomass gasification process for a 3rd generation biofuel.
    Hertwich EG; Zhang X
    Environ Sci Technol; 2009 Jun; 43(11):4207-12. PubMed ID: 19569353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an environmentally friendly power and hydrogen co-generation system: Integration of solar-based sorption enhanced gasification with in-situ CO
    Khosravi S; Khoshbakhti Saray R; Neshat E; Arabkoohsar A
    Chemosphere; 2023 Dec; 343():140226. PubMed ID: 37741369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power.
    Ansari SH; Ahmed A; Razzaq A; Hildebrandt D; Liu X; Park YK
    Environ Pollut; 2020 Nov; 266(Pt 3):115103. PubMed ID: 32650303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation.
    Leong YK; Chen WH; Lee DJ; Chang JS
    J Hazard Mater; 2021 Sep; 418():126278. PubMed ID: 34098259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.
    Mínguez M; Jiménez A; Rodríguez J; González C; López I; Nieto R
    Waste Manag Res; 2013 Apr; 31(4):401-12. PubMed ID: 23444152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle environmental sustainability and cumulative energy assessment of biomass pellets biofuel derived from agroforest residues.
    Rashedi A; Gul N; Hussain M; Hadi R; Khan N; Nadeem SG; Khanam T; Asyraf MRM; Kumar V
    PLoS One; 2022; 17(10):e0275005. PubMed ID: 36206274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle.
    Ren J; Xu C; Qian Z; Huang W; Wang B
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in environmental CO
    Hai T; Ali MA; Alizadeh A; Almojil SF; Almohana AI; Alali AF
    Chemosphere; 2023 Apr; 319():137847. PubMed ID: 36657576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of a novel plan for thermochemical cycles and PEM fuel cells to produce hydrogen and power: Application of environmental perspective.
    Yu D; Duan C; Gu B
    Chemosphere; 2023 Sep; 334():138935. PubMed ID: 37211169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network.
    Musharavati F; Khoshnevisan A; Alirahmi SM; Ahmadi P; Khanmohammadi S
    Chemosphere; 2022 Jan; 287(Pt 2):131980. PubMed ID: 34509018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of biofuel processes utilising separate lignin and carbohydrate processing.
    Melin K; Kohl T; Koskinen J; Hurme M
    Bioresour Technol; 2015 Sep; 192():397-409. PubMed ID: 26056782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS.
    Lan W; Chen G; Zhu X; Wang X; Liu C; Xu B
    Sci Total Environ; 2018 Jul; 628-629():1278-1286. PubMed ID: 30045549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance assessment and multiobjective optimization of a biomass waste-fired gasification combined cycle for emission reduction.
    Hai T; Alshahri AH; Mohammed AS; Sharma A; Almujibah HR; Mohammed Metwally AS; Ullah M
    Chemosphere; 2023 Sep; 334():138980. PubMed ID: 37207897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development.
    Alaedini AH; Tourani HK; Saidi M
    J Environ Manage; 2023 Mar; 329():117077. PubMed ID: 36565498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals.
    Pang S
    Biotechnol Adv; 2019; 37(4):589-597. PubMed ID: 30447327
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.