These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37247709)

  • 1. Strengthening-toughening pure poly(lactic acid) with ultra-transparency through increasing mesophase promoted by elongational flow field.
    Cai Y; Liu S; Fang C; Liu Z; He Y; Qu JP
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125091. PubMed ID: 37247709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High transparency, degradable and UV-protective poly(lactic acid) composites based on elongational rheology and chain extender assisted melt blending.
    Li X; Liu Z; Liu Z; Li Y; Tang L; Zhang W; Lu X; Li Y; Niu R; Qu J
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128469. PubMed ID: 38040153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Bone-Mimicking High-Performance Structured Poly(lactic acid) by an Elongational Flow Field and Facile Annealing Process.
    He Y; Xu WH; Zhang H; Qu JP
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13411-13420. PubMed ID: 32105444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly (lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents.
    Jia S; Zhao L; Wang X; Chen Y; Pan H; Han L; Zhang H; Dong L; Zhang H
    Int J Biol Macromol; 2022 Mar; 201():662-675. PubMed ID: 35077751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ductile poly(lactic acid)-based blends derived from poly(butylene succinate-co-butylene 2,5-thiophenedicarboxylate): Structures and properties.
    Wang G; Zhang L; Chi X
    Int J Biol Macromol; 2023 Apr; 234():123702. PubMed ID: 36801293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: The effect of mesophase transition on mechanical properties.
    Lee W; Lee J; Chung JW; Kwak SY
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1103-1113. PubMed ID: 34710481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites
    Sun DX; Gu T; Mao YT; Huang CH; Qi XD; Yang JH; Wang Y
    Biomacromolecules; 2022 Apr; 23(4):1789-1802. PubMed ID: 35344361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging.
    Xie L; Xu H; Niu B; Ji X; Chen J; Li ZM; Hsiao BS; Zhong GJ
    Biomacromolecules; 2014 Nov; 15(11):4054-64. PubMed ID: 25245861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends.
    Jiang L; Wolcott MP; Zhang J
    Biomacromolecules; 2006 Jan; 7(1):199-207. PubMed ID: 16398516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Based Poly(lactic acid)/Poly(butylene sebacate) Blends with Improved Toughness.
    Frone AN; Popa MS; Uşurelu CD; Panaitescu DM; Gabor AR; Nicolae CA; Raduly MF; Zaharia A; Alexandrescu E
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of polylactide by poly(ionic liquid)-b-polylactide copolymer and bio-based ionomers: Excellent toughness, transparency and antibacterial property.
    Chen X; Ding Y; Li Y; Li J; Sun L; Wei X; Wei J; Zhang K; Wang H; Pan L; He S; Li Y
    Int J Biol Macromol; 2022 Nov; 221():1512-1526. PubMed ID: 35998852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility.
    He W; Ye L; Coates P; Caton-Rose F; Zhao X
    Int J Biol Macromol; 2023 May; 236():123980. PubMed ID: 36898455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters.
    Yoksan R; Dang KM; Boontanimitr A; Chirachanchai S
    Int J Biol Macromol; 2021 Nov; 190():141-150. PubMed ID: 34481849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials.
    Zhao X; Liu J; Li J; Liang X; Zhou W; Peng S
    Int J Biol Macromol; 2022 Oct; 218():115-134. PubMed ID: 35868408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-heat and UV-barrier poly(lactic acid) by microwave-assisted functionalization of waste natural fibers.
    Ke L; Shang H; Tang M; Li X; Jiang L; Lu S; Tang D; Huang D; Zhu J; Liu C; Xu H; He X; Gao J
    Int J Biol Macromol; 2022 Nov; 220():827-836. PubMed ID: 35998855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongational Flow Field Processed Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends with Distinct Interlayer Phase for Enhanced Tribological Properties.
    Chen X; Wang X; Cao C; Yuan Z; Yu D; Li F; Chen X
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34200942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness.
    Zhang Z; Cui S; Ma R; Ye Q; Sun J; Wang Y; Liu C; Wang Z
    Int J Biol Macromol; 2023 Nov; 251():126220. PubMed ID: 37572805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.
    Xie L; Xu H; Chen JB; Zhang ZJ; Hsiao BS; Zhong GJ; Chen J; Li ZM
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8023-32. PubMed ID: 25826123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends.
    Li Y; Han C; Yu Y; Huang D
    Int J Biol Macromol; 2019 May; 129():1-12. PubMed ID: 30731159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.
    Li X; Chu CL; Liu L; Liu XK; Bai J; Guo C; Xue F; Lin PH; Chu PK
    Biomaterials; 2015 May; 49():135-44. PubMed ID: 25725562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.