These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 3724780)
1. A further definition of characteristics of DNA-excision repair in xeroderma pigmentosum complementation group A strains. Kantor GJ; Player AN Mutat Res; 1986 Jul; 166(1):79-88. PubMed ID: 3724780 [TBL] [Abstract][Full Text] [Related]
2. Biological significance of domain-oriented DNA repair in xeroderma pigmentosum cells. Kantor GJ; Elking CF Cancer Res; 1988 Feb; 48(4):844-9. PubMed ID: 3338081 [TBL] [Abstract][Full Text] [Related]
3. The rate of removal of pyrimidine dimers in quiescent cultures of normal human and xeroderma pigmentosum cells. Kantor GJ; Hull DR Mutat Res; 1984; 132(1-2):21-31. PubMed ID: 6472315 [TBL] [Abstract][Full Text] [Related]
4. Evidence that DNA excision-repair in xeroderma pigmentosum group A is limited but biologically significant. Hull DR; Kantor GJ Mutat Res; 1983 Jun; 112(3):169-79. PubMed ID: 6306455 [TBL] [Abstract][Full Text] [Related]
5. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Zelle B; Lohman PH Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies of host-cell reactivation, cellular capacity and enhanced reactivation of herpes simplex virus in normal, xeroderma pigmentosum and Cockayne syndrome fibroblasts. Ryan DK; Rainbow AJ Mutat Res; 1986 Jul; 166(1):99-111. PubMed ID: 3014327 [TBL] [Abstract][Full Text] [Related]
7. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Venema J; van Hoffen A; Karcagi V; Natarajan AT; van Zeeland AA; Mullenders LH Mol Cell Biol; 1991 Aug; 11(8):4128-34. PubMed ID: 1649389 [TBL] [Abstract][Full Text] [Related]
8. Excision repair characteristics of denV-transformed xeroderma pigmentosum cells. Ley RD; Applegate LA; de Riel JK; Henderson EE Mutat Res; 1989 Mar; 217(2):101-7. PubMed ID: 2918865 [TBL] [Abstract][Full Text] [Related]
9. Low-level DNA exchanges in normal human and xeroderma pigmentosum cells after UV irradiation. Fujiwara Y; Tatsumi M Mutat Res; 1977 May; 43(2):279-90. PubMed ID: 865496 [TBL] [Abstract][Full Text] [Related]
10. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts. Roza L; Vermeulen W; Bergen Henegouwen JB; Eker AP; Jaspers NG; Lohman PH; Hoeijmakers JH Cancer Res; 1990 Mar; 50(6):1905-10. PubMed ID: 2306742 [TBL] [Abstract][Full Text] [Related]
11. Dose-dependent increase in repair of 1-beta-D-arabinofuranosylcytosine-detectable DNA lesions in UV-treated xeroderma pigmentosum (group A) fibroblasts. Mirzayans R; Paterson MC Mutat Res; 1991 Mar; 262(3):151-7. PubMed ID: 2002813 [TBL] [Abstract][Full Text] [Related]
12. Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide. Mirzayans R; Paterson MC Mutat Res; 1991 Jul; 255(1):57-65. PubMed ID: 1906130 [TBL] [Abstract][Full Text] [Related]
13. DNA damage and repair in normal, xeroderma pigmentosum and XP revertant cells analyzed by gel electrophoresis: excision of cyclobutane dimers from the whole genome is not necessary for cell survival. Cleaver JE Carcinogenesis; 1989 Sep; 10(9):1691-6. PubMed ID: 2766460 [TBL] [Abstract][Full Text] [Related]
14. Cytotoxicity of carcinogenic aromatic amides in normal and xeroderma pigmentosum fibroblasts with different DNA repair capabilities. Maher VM; Birch N; Otto JR; MacCormick JJ J Natl Cancer Inst; 1975 Jun; 54(6):1287-94. PubMed ID: 1133846 [TBL] [Abstract][Full Text] [Related]
15. Detection of DNA single-strand breaks during the repair of UV damage in xeroderma pigmentosum cells. Fornace AJ; Seres DS Radiat Res; 1983 Jan; 93(1):107-11. PubMed ID: 6823503 [TBL] [Abstract][Full Text] [Related]
16. Rate and extent of DNA repair in nondividing human diploid fibroblasts. Kantor GJ; Setlow RB Cancer Res; 1981 Mar; 41(3):819-25. PubMed ID: 7459869 [TBL] [Abstract][Full Text] [Related]
17. Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C. Kantor GJ; Barsalou LS; Hanawalt PC Mutat Res; 1990 May; 235(3):171-80. PubMed ID: 2342504 [TBL] [Abstract][Full Text] [Related]
18. A seventh complementation group in excision-deficient xeroderma pigmentosum. Keijzer W; Jaspers NG; Abrahams PJ; Taylor AM; Arlett CF; Zelle B; Takebe H; Kinmont PD; Bootsma D Mutat Res; 1979 Aug; 62(1):183-90. PubMed ID: 492197 [TBL] [Abstract][Full Text] [Related]
19. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. Evans MK; Robbins JH; Ganges MB; Tarone RE; Nairn RS; Bohr VA J Biol Chem; 1993 Mar; 268(7):4839-47. PubMed ID: 8444862 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the rate of excision of major UV photoproducts in the strands of the human HPRT gene of normal and xeroderma pigmentosum variant cells. Tung BS; McGregor WG; Wang YC; Maher VM; McCormick JJ Mutat Res; 1996 Jan; 362(1):65-74. PubMed ID: 8538650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]