BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 37247811)

  • 1. Specific base catalysis by yeast alcohol dehydrogenase I with substitutions of histidine-48 by glutamate or serine residues in the proton relay system.
    Plapp BV; Kratzer DA; Souhrada SK; Warth E; Jacobi T
    Chem Biol Interact; 2023 Sep; 382():110558. PubMed ID: 37247811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent isotope and mutagenesis studies on the proton relay system in yeast alcohol dehydrogenase 1.
    Plapp BV
    Chem Biol Interact; 2024 Jan; 388():110853. PubMed ID: 38151107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Thr45Gly substitution in yeast alcohol dehydrogenase substantially decreases catalysis, alters pH dependencies, and disrupts the proton relay system.
    Pal S; Plapp BV
    Chem Biol Interact; 2021 Nov; 349():109650. PubMed ID: 34529977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases.
    Kim K; Plapp BV
    Chem Biol Interact; 2019 Apr; 302():172-182. PubMed ID: 30721696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitution of both histidines in the active site of yeast alcohol dehydrogenase 1 exposes underlying pH dependencies.
    Jacobi T; Kratzer DA; Plapp BV
    Chem Biol Interact; 2024 May; 394():110992. PubMed ID: 38579923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase.
    LeBrun LA; Park DH; Ramaswamy S; Plapp BV
    Biochemistry; 2004 Mar; 43(11):3014-26. PubMed ID: 15023053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of coenzyme binding to horse liver alcohol dehydrogenase.
    LeBrun LA; Plapp BV
    Biochemistry; 1999 Sep; 38(38):12387-93. PubMed ID: 10493806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I.
    Gould RM; Plapp BV
    Biochemistry; 1990 Jun; 29(23):5463-8. PubMed ID: 2201405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol.
    Plapp BV; Lee AT; Khanna A; Pryor JM
    Chem Biol Interact; 2013 Feb; 202(1-3):104-10. PubMed ID: 23200945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxyl groups near the active site zinc contribute to catalysis in yeast alcohol dehydrogenase.
    Ganzhorn AJ; Plapp BV
    J Biol Chem; 1988 Apr; 263(11):5446-54. PubMed ID: 3281940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitutions in a flexible loop of horse liver alcohol dehydrogenase hinder the conformational change and unmask hydrogen transfer.
    Ramaswamy S; Park DH; Plapp BV
    Biochemistry; 1999 Oct; 38(42):13951-9. PubMed ID: 10529241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93.
    Kim K; Plapp BV
    Chem Biol Interact; 2017 Oct; 276():77-87. PubMed ID: 28025168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic structures of horse liver alcohol dehydrogenase (HLADH): results of molecular dynamics simulations of HLADH-NAD(+)-PhCH(2)OH, HLADH-NAD(+)-PhCH(2)O(-), and HLADH-NADH-PhCHO.
    Luo J; Bruice TC
    J Am Chem Soc; 2001 Dec; 123(48):11952-9. PubMed ID: 11724603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitutions of a buried glutamate residue hinder the conformational change in horse liver alcohol dehydrogenase and yield a surprising complex with endogenous 3'-Dephosphocoenzyme A.
    Kim YH; Gogerty DS; Plapp BV
    Arch Biochem Biophys; 2018 Sep; 653():97-106. PubMed ID: 30018019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General base catalysis in a glutamine for histidine mutant at position 51 of human liver alcohol dehydrogenase.
    Ehrig T; Hurley TD; Edenberg HJ; Bosron WF
    Biochemistry; 1991 Jan; 30(4):1062-8. PubMed ID: 1989677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154-->Cys forms of yeast xylitol dehydrogenase.
    Klimacek M; Hellmer H; Nidetzky B
    Biochem J; 2007 Jun; 404(3):421-9. PubMed ID: 17343568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila lebanonensis alcohol dehydrogenase: pH dependence of the kinetic coefficients.
    Kaaber Brendskag M; McKinley-McKee JS; Winberg JO
    Biochim Biophys Acta; 1999 Apr; 1431(1):74-86. PubMed ID: 10209281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the ionic properties of the essential histidine residue of yeast alcohol dehydrogenase in complexes of the enzyme with its coenzymes and substrates.
    Dickenson CJ; Dickinson FM
    Biochem J; 1977 Jan; 161(1):73-82. PubMed ID: 15541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.