These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 37247941)

  • 1. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides.
    Ding D; Zhang SJ; Szostak JW
    Nucleic Acids Res; 2023 Jul; 51(13):6528-6539. PubMed ID: 37247941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying.
    Zhang SJ; Duzdevich D; Ding D; Szostak JW
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2116429119. PubMed ID: 35446612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension.
    Duzdevich D; Carr CE; Ding D; Zhang SJ; Walton TS; Szostak JW
    Nucleic Acids Res; 2021 Apr; 49(7):3681-3691. PubMed ID: 33744957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides.
    Prywes N; Blain JC; Del Frate F; Szostak JW
    Elife; 2016 Jun; 5():. PubMed ID: 27351102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates.
    Ding D; Zhou L; Giurgiu C; Szostak JW
    Nucleic Acids Res; 2022 Jan; 50(1):35-45. PubMed ID: 34893864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentially Prebiotic Activation Chemistry Compatible with Nonenzymatic RNA Copying.
    Zhang SJ; Duzdevich D; Szostak JW
    J Am Chem Soc; 2020 Sep; 142(35):14810-14813. PubMed ID: 32794700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-Molecule Organocatalysis Facilitates In Situ Nucleotide Activation and RNA Copying.
    Aitken HRM; Wright TH; Radakovic A; Szostak JW
    J Am Chem Soc; 2023 Jul; 145(29):16142-16149. PubMed ID: 37431761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide.
    Zhang W; Tam CP; Zhou L; Oh SS; Wang J; Szostak JW
    J Am Chem Soc; 2018 Feb; 140(8):2829-2840. PubMed ID: 29411978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides.
    Walton T; Zhang W; Li L; Tam CP; Szostak JW
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10812-10819. PubMed ID: 30908802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides.
    Li L; Prywes N; Tam CP; O'Flaherty DK; Lelyveld VS; Izgu EC; Pal A; Szostak JW
    J Am Chem Soc; 2017 Feb; 139(5):1810-1813. PubMed ID: 28117989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.
    Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW
    J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates.
    Walton T; DasGupta S; Duzdevich D; Oh SS; Szostak JW
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5741-5748. PubMed ID: 32123094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex.
    Zhang W; Tam CP; Walton T; Fahrenbach AC; Birrane G; Szostak JW
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7659-7664. PubMed ID: 28673998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides.
    Jia X; Zhang SJ; Zhou L; Szostak JW
    Nucleic Acids Res; 2024 Jun; 52(10):5451-5464. PubMed ID: 38726871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides.
    Kim SC; Zhou L; Zhang W; O'Flaherty DK; Rondo-Brovetto V; Szostak JW
    J Am Chem Soc; 2020 Feb; 142(5):2317-2326. PubMed ID: 31913615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-Directed Copying of RNA by Non-enzymatic Ligation.
    Zhou L; O'Flaherty DK; Szostak JW
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15682-15687. PubMed ID: 32558121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension.
    Heuberger BD; Pal A; Del Frate F; Topkar VV; Szostak JW
    J Am Chem Soc; 2015 Feb; 137(7):2769-75. PubMed ID: 25654265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-Directed Catalysis of a Multistep Reaction Pathway for Nonenzymatic RNA Primer Extension.
    Walton T; Pazienza L; Szostak JW
    Biochemistry; 2019 Feb; 58(6):755-762. PubMed ID: 30566332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The virtual circular genome model for primordial RNA replication.
    Zhou L; Ding D; Szostak JW
    RNA; 2021 Jan; 27(1):1-11. PubMed ID: 33028653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Tests of the Virtual Circular Genome Model for Nonenzymatic RNA Replication.
    Ding D; Zhou L; Mittal S; Szostak JW
    J Am Chem Soc; 2023 Apr; 145(13):7504-7515. PubMed ID: 36963403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.