BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 37247941)

  • 1. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides.
    Ding D; Zhang SJ; Szostak JW
    Nucleic Acids Res; 2023 Jul; 51(13):6528-6539. PubMed ID: 37247941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying.
    Zhang SJ; Duzdevich D; Ding D; Szostak JW
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2116429119. PubMed ID: 35446612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension.
    Duzdevich D; Carr CE; Ding D; Zhang SJ; Walton TS; Szostak JW
    Nucleic Acids Res; 2021 Apr; 49(7):3681-3691. PubMed ID: 33744957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides.
    Prywes N; Blain JC; Del Frate F; Szostak JW
    Elife; 2016 Jun; 5():. PubMed ID: 27351102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates.
    Ding D; Zhou L; Giurgiu C; Szostak JW
    Nucleic Acids Res; 2022 Jan; 50(1):35-45. PubMed ID: 34893864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentially Prebiotic Activation Chemistry Compatible with Nonenzymatic RNA Copying.
    Zhang SJ; Duzdevich D; Szostak JW
    J Am Chem Soc; 2020 Sep; 142(35):14810-14813. PubMed ID: 32794700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-Molecule Organocatalysis Facilitates In Situ Nucleotide Activation and RNA Copying.
    Aitken HRM; Wright TH; Radakovic A; Szostak JW
    J Am Chem Soc; 2023 Jul; 145(29):16142-16149. PubMed ID: 37431761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide.
    Zhang W; Tam CP; Zhou L; Oh SS; Wang J; Szostak JW
    J Am Chem Soc; 2018 Feb; 140(8):2829-2840. PubMed ID: 29411978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides.
    Walton T; Zhang W; Li L; Tam CP; Szostak JW
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10812-10819. PubMed ID: 30908802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides.
    Li L; Prywes N; Tam CP; O'Flaherty DK; Lelyveld VS; Izgu EC; Pal A; Szostak JW
    J Am Chem Soc; 2017 Feb; 139(5):1810-1813. PubMed ID: 28117989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.
    Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW
    J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates.
    Walton T; DasGupta S; Duzdevich D; Oh SS; Szostak JW
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5741-5748. PubMed ID: 32123094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex.
    Zhang W; Tam CP; Walton T; Fahrenbach AC; Birrane G; Szostak JW
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7659-7664. PubMed ID: 28673998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides.
    Jia X; Zhang SJ; Zhou L; Szostak JW
    Nucleic Acids Res; 2024 Jun; 52(10):5451-5464. PubMed ID: 38726871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides.
    Kim SC; Zhou L; Zhang W; O'Flaherty DK; Rondo-Brovetto V; Szostak JW
    J Am Chem Soc; 2020 Feb; 142(5):2317-2326. PubMed ID: 31913615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-Directed Copying of RNA by Non-enzymatic Ligation.
    Zhou L; O'Flaherty DK; Szostak JW
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15682-15687. PubMed ID: 32558121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension.
    Heuberger BD; Pal A; Del Frate F; Topkar VV; Szostak JW
    J Am Chem Soc; 2015 Feb; 137(7):2769-75. PubMed ID: 25654265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-Directed Catalysis of a Multistep Reaction Pathway for Nonenzymatic RNA Primer Extension.
    Walton T; Pazienza L; Szostak JW
    Biochemistry; 2019 Feb; 58(6):755-762. PubMed ID: 30566332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The virtual circular genome model for primordial RNA replication.
    Zhou L; Ding D; Szostak JW
    RNA; 2021 Jan; 27(1):1-11. PubMed ID: 33028653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Tests of the Virtual Circular Genome Model for Nonenzymatic RNA Replication.
    Ding D; Zhou L; Mittal S; Szostak JW
    J Am Chem Soc; 2023 Apr; 145(13):7504-7515. PubMed ID: 36963403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.