BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37248412)

  • 1. Nucleophilic covalent ligand discovery for the cysteine redoxome.
    Fu L; Jung Y; Tian C; Ferreira RB; Cheng R; He F; Yang J; Carroll KS
    Nat Chem Biol; 2023 Nov; 19(11):1309-1319. PubMed ID: 37248412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling the Reactivity of Cyclic C-Nucleophiles towards Electrophilic Sulfur in Cysteine Sulfenic Acid.
    Gupta V; Carroll KS
    Chem Sci; 2016 Jan; 7(1):400-415. PubMed ID: 26819701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting.
    Shi Y; Fu L; Yang J; Carroll KS
    Nat Chem; 2021 Nov; 13(11):1140-1150. PubMed ID: 34531572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells.
    Leonard SE; Reddie KG; Carroll KS
    ACS Chem Biol; 2009 Sep; 4(9):783-99. PubMed ID: 19645509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.
    Gupta V; Paritala H; Carroll KS
    Bioconjug Chem; 2016 May; 27(5):1411-8. PubMed ID: 27123991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
    Vinogradova EV; Zhang X; Remillard D; Lazar DC; Suciu RM; Wang Y; Bianco G; Yamashita Y; Crowley VM; Schafroth MA; Yokoyama M; Konrad DB; Lum KM; Simon GM; Kemper EK; Lazear MR; Yin S; Blewett MM; Dix MM; Nguyen N; Shokhirev MN; Chin EN; Lairson LL; Melillo B; Schreiber SL; Forli S; Teijaro JR; Cravatt BF
    Cell; 2020 Aug; 182(4):1009-1026.e29. PubMed ID: 32730809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments.
    Petri L; Ábrányi-Balogh P; Tímea I; Pálfy G; Perczel A; Knez D; Hrast M; Gobec M; Sosič I; Nyíri K; Vértessy BG; Jänsch N; Desczyk C; Meyer-Almes FJ; Ogris I; Golič Grdadolnik S; Iacovino LG; Binda C; Gobec S; Keserű GM
    Chembiochem; 2021 Feb; 22(4):743-753. PubMed ID: 33030752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility.
    Shi Y; Carroll KS
    Redox Biol; 2021 Oct; 46():102072. PubMed ID: 34298464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A road map for prioritizing warheads for cysteine targeting covalent inhibitors.
    Ábrányi-Balogh P; Petri L; Imre T; Szijj P; Scarpino A; Hrast M; Mitrović A; Fonovič UP; Németh K; Barreteau H; Roper DI; Horváti K; Ferenczy GG; Kos J; Ilaš J; Gobec S; Keserű GM
    Eur J Med Chem; 2018 Dec; 160():94-107. PubMed ID: 30321804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strained cycloalkynes as new protein sulfenic acid traps.
    Poole TH; Reisz JA; Zhao W; Poole LB; Furdui CM; King SB
    J Am Chem Soc; 2014 Apr; 136(17):6167-70. PubMed ID: 24724926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical evaluation of probes for cysteine sulfenic acid.
    Pople JMM; Chalker JM
    Curr Opin Chem Biol; 2021 Feb; 60():55-65. PubMed ID: 32866852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.
    Gupta V; Carroll KS
    Chem Commun (Camb); 2016 Feb; 52(16):3414-7. PubMed ID: 26878905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-Wide Survey of Cysteine Oxidation by Using a Norbornene Probe.
    Alcock LJ; Langini M; Stühler K; Remke M; Perkins MV; Bernardes GJL; Chalker JM
    Chembiochem; 2020 May; 21(9):1329-1334. PubMed ID: 31802583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana.
    Zaffagnini M; Fermani S; Calvaresi M; Orrù R; Iommarini L; Sparla F; Falini G; Bottoni A; Trost P
    Antioxid Redox Signal; 2016 Mar; 24(9):502-17. PubMed ID: 26650776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.