These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37248412)

  • 21. Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments.
    Aatkar A; Vuorinen A; Longfield OE; Gilbert K; Peltier-Heap R; Wagner CD; Zappacosta F; Rittinger K; Chung CW; House D; Tomkinson NCO; Bush JT
    ACS Chem Biol; 2023 Sep; 18(9):1926-1937. PubMed ID: 37084287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfenome mining in Arabidopsis thaliana.
    Waszczak C; Akter S; Eeckhout D; Persiau G; Wahni K; Bodra N; Van Molle I; De Smet B; Vertommen D; Gevaert K; De Jaeger G; Van Montagu M; Messens J; Van Breusegem F
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11545-50. PubMed ID: 25049418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fragment-based covalent ligand discovery.
    Lu W; Kostic M; Zhang T; Che J; Patricelli MP; Jones LH; Chouchani ET; Gray NS
    RSC Chem Biol; 2021 Apr; 2(2):354-367. PubMed ID: 34458789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines.
    Kim HR; Byun DP; Thakur K; Ritchie J; Xie Y; Holewinski R; Suazo KF; Stevens M; Liechty H; Tagirasa R; Jing Y; Andresson T; Johnson SM; Yoo E
    ACS Chem Biol; 2024 May; 19(5):1082-1092. PubMed ID: 38629450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4.
    Gonzalez-Valero A; Reeves AG; Page ACS; Moon PJ; Miller E; Coulonval K; Crossley SWM; Xie X; He D; Musacchio PZ; Christian AH; McKenna JM; Lewis RA; Fang E; Dovala D; Lu Y; McGregor LM; Schirle M; Tallarico JA; Roger PP; Toste FD; Chang CJ
    J Am Chem Soc; 2022 Dec; 144(50):22890-22901. PubMed ID: 36484997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orphan PTMs: Rare, yet functionally important modifications of cysteine.
    Shannon DA; Weerapana E
    Biopolymers; 2014 Feb; 101(2):156-64. PubMed ID: 23564220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fragment-Based Discovery of Irreversible Covalent Inhibitors of Cysteine Proteases Using Chlorofluoroacetamide Library.
    Miura C; Shindo N; Okamoto K; Kuwata K; Ojida A
    Chem Pharm Bull (Tokyo); 2020; 68(11):1074-1081. PubMed ID: 33132374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteome-wide Ligand and Target Discovery by Using Strain-Enabled Cyclopropane Electrophiles.
    Liu Y; Yu Z; Li P; Yang T; Ding K; Zhang ZM; Tan Y; Li Z
    J Am Chem Soc; 2024 Jul; 146(30):20823-20836. PubMed ID: 39018468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein sulfenic acid formation: from cellular damage to redox regulation.
    Roos G; Messens J
    Free Radic Biol Med; 2011 Jul; 51(2):314-26. PubMed ID: 21605662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
    Nagy P; Ashby MT
    J Am Chem Soc; 2007 Nov; 129(45):14082-91. PubMed ID: 17939659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins.
    Poole LB; Klomsiri C; Knaggs SA; Furdui CM; Nelson KJ; Thomas MJ; Fetrow JS; Daniel LW; King SB
    Bioconjug Chem; 2007; 18(6):2004-17. PubMed ID: 18030992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent fragment approaches targeting non-cysteine residues.
    Csorba N; Ábrányi-Balogh P; Keserű GM
    Trends Pharmacol Sci; 2023 Nov; 44(11):802-816. PubMed ID: 37770315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Search for Covalently Ligandable Proteins in Biological Systems.
    Badshah SL; Mabkhot YN
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27598117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.
    Salsbury FR; Knutson ST; Poole LB; Fetrow JS
    Protein Sci; 2008 Feb; 17(2):299-312. PubMed ID: 18227433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues.
    Ma TP; Izrael-Tomasevic A; Mroue R; Budayeva H; Malhotra S; Raisner R; Evangelista M; Rose CM; Kirkpatrick DS; Yu K
    J Proteome Res; 2023 Jul; 22(7):2218-2231. PubMed ID: 37285454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A chemical approach for detecting sulfenic acid-modified proteins in living cells.
    Reddie KG; Seo YH; Muse Iii WB; Leonard SE; Carroll KS
    Mol Biosyst; 2008 Jun; 4(6):521-31. PubMed ID: 18493649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
    Saurin AT; Neubert H; Brennan JP; Eaton P
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17982-7. PubMed ID: 15604151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.