BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37248548)

  • 1. Structural basis of human PRPS2 filaments.
    Lu GM; Hu HH; Chang CC; Zhong J; Zhou X; Guo CJ; Zhang T; Li YL; Yin B; Liu JL
    Cell Biosci; 2023 May; 13(1):100. PubMed ID: 37248548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filamentation modulates allosteric regulation of PRPS.
    Hu HH; Lu GM; Chang CC; Li Y; Zhong J; Guo CJ; Zhou X; Yin B; Zhang T; Liu JL
    Elife; 2022 Jun; 11():. PubMed ID: 35736577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human PRPS1 filaments stabilize allosteric sites to regulate activity.
    Hvorecny KL; Hargett K; Quispe JD; Kollman JM
    Nat Struct Mol Biol; 2023 Mar; 30(3):391-402. PubMed ID: 36747094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRPS2 mutations drive acute lymphoblastic leukemia relapse through influencing PRPS1/2 hexamer stability.
    Song L; Li P; Sun H; Ding L; Wang J; Li B; Zhou BS; Feng H; Li Y
    Blood Sci; 2023 Jan; 5(1):39-50. PubMed ID: 36742181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase.
    Eriksen TA; Kadziola A; Bentsen AK; Harlow KW; Larsen S
    Nat Struct Biol; 2000 Apr; 7(4):303-8. PubMed ID: 10742175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical roles of CTP synthase N-terminal in cytoophidium assembly.
    Huang Y; Wang JJ; Ghosh S; Liu JL
    Exp Cell Res; 2017 May; 354(2):122-133. PubMed ID: 28342900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase.
    Ahmed M; Taylor W; Smith PR; Becker MA
    J Biol Chem; 1999 Mar; 274(11):7482-8. PubMed ID: 10066814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PRPS polymerization influences lens fiber organization in zebrafish.
    Begovich K; Yelon D; Wilhelm JE
    Dev Dyn; 2020 Aug; 249(8):1018-1031. PubMed ID: 32243675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Clarification of PRPS-1 Structural Essentials.
    Danielyan KE; Grabski HV; Ginosyan SV; Chailyan SG; Tiratsuyan SG
    Cell Biochem Biophys; 2022 Dec; 80(4):699-709. PubMed ID: 36201097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance.
    Hove-Jensen B; Andersen KR; Kilstrup M; Martinussen J; Switzer RL; Willemoës M
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 28031352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy.
    Lövestam S; Koh FA; van Knippenberg B; Kotecha A; Murzin AG; Goedert M; Scheres SHW
    Elife; 2022 Mar; 11():. PubMed ID: 35244536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of E. coli PRPP synthetase.
    Zhou W; Tsai A; Dattmore DA; Stives DP; Chitrakar I; D'alessandro AM; Patil S; Hicks KA; French JB
    BMC Struct Biol; 2019 Jan; 19(1):1. PubMed ID: 30646888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of dynamic P5CS filaments.
    Zhong J; Guo CJ; Zhou X; Chang CC; Yin B; Zhang T; Hu HH; Lu GM; Liu JL
    Elife; 2022 Mar; 11():. PubMed ID: 35286254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.
    Kadziola A; Jepsen CH; Johansson E; McGuire J; Larsen S; Hove-Jensen B
    J Mol Biol; 2005 Dec; 354(4):815-28. PubMed ID: 16288921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila CTP synthase can form distinct substrate- and product-bound filaments.
    Zhou X; Guo CJ; Hu HH; Zhong J; Sun Q; Liu D; Zhou S; Chang CC; Liu JL
    J Genet Genomics; 2019 Nov; 46(11):537-545. PubMed ID: 31902586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium.
    Azzam G; Liu JL
    PLoS Genet; 2013; 9(2):e1003256. PubMed ID: 23459760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure.
    Krath BN; Hove-Jensen B
    Protein Sci; 2001 Nov; 10(11):2317-24. PubMed ID: 11604537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structures of Thermoplasma volcanium phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs.
    Cherney MM; Cherney LT; Garen CR; James MN
    J Mol Biol; 2011 Nov; 413(4):844-56. PubMed ID: 21963988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.
    Andersen RW; Leggio LL; Hove-Jensen B; Kadziola A
    Extremophiles; 2015 Mar; 19(2):407-15. PubMed ID: 25605536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site.
    Lundegaard C; Jensen KF
    Biochemistry; 1999 Mar; 38(11):3327-34. PubMed ID: 10079076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.