These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress. Li X; Day NJ; Feng S; Gaffrey MJ; Lin TD; Paurus VL; Monroe ME; Moore RJ; Yang B; Xian M; Qian WJ Redox Biol; 2021 Oct; 46():102111. PubMed ID: 34425387 [TBL] [Abstract][Full Text] [Related]
3. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Zhang T; Gaffrey MJ; Li X; Qian WJ Am J Physiol Cell Physiol; 2021 Feb; 320(2):C182-C194. PubMed ID: 33264075 [TBL] [Abstract][Full Text] [Related]
4. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Duan J; Gaffrey MJ; Qian WJ Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434 [TBL] [Abstract][Full Text] [Related]
5. The Expanding Landscape of the Thiol Redox Proteome. Yang J; Carroll KS; Liebler DC Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762 [TBL] [Abstract][Full Text] [Related]
9. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE. Izquierdo-Álvarez A; Martínez-Ruiz A J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555 [TBL] [Abstract][Full Text] [Related]
10. Global approaches for protein thiol redox state detection. Knoke LR; Leichert LI Curr Opin Chem Biol; 2023 Dec; 77():102390. PubMed ID: 37797572 [TBL] [Abstract][Full Text] [Related]
11. Redox Proteomics Applied to the Thiol Secretome. Ghezzi P; Chan P Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336 [TBL] [Abstract][Full Text] [Related]
12. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Shi Y; Carroll KS Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209 [TBL] [Abstract][Full Text] [Related]
13. Quantifying reversible oxidation of protein thiols in photosynthetic organisms. Slade WO; Werth EG; McConnell EW; Alvarez S; Hicks LM J Am Soc Mass Spectrom; 2015 Apr; 26(4):631-40. PubMed ID: 25698223 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. Wani R; Murray BW Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239 [TBL] [Abstract][Full Text] [Related]
15. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins. Boronat S; Domènech A; Hidalgo E Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838 [TBL] [Abstract][Full Text] [Related]
16. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model. Day NJ; Zhang T; Gaffrey MJ; Zhao R; Fillmore TL; Moore RJ; Rodney GG; Qian WJ Free Radic Biol Med; 2022 Nov; 193(Pt 1):373-384. PubMed ID: 36306991 [TBL] [Abstract][Full Text] [Related]
17. Advances in purification and separation of posttranslationally modified proteins. Černý M; Skalák J; Cerna H; Brzobohatý B J Proteomics; 2013 Oct; 92():2-27. PubMed ID: 23777897 [TBL] [Abstract][Full Text] [Related]
18. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471 [TBL] [Abstract][Full Text] [Related]