These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 37248656)

  • 1. Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
    Li X; Gluth A; Zhang T; Qian WJ
    Proteomics; 2023 Jul; 23(13-14):e2200194. PubMed ID: 37248656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress.
    Li X; Day NJ; Feng S; Gaffrey MJ; Lin TD; Paurus VL; Monroe ME; Moore RJ; Yang B; Xian M; Qian WJ
    Redox Biol; 2021 Oct; 46():102111. PubMed ID: 34425387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
    Zhang T; Gaffrey MJ; Li X; Qian WJ
    Am J Physiol Cell Physiol; 2021 Feb; 320(2):C182-C194. PubMed ID: 33264075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J; Gaffrey MJ; Qian WJ
    Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Click chemistry-based thiol redox proteomics reveals significant cysteine reduction induced by chronic ethanol consumption.
    Harris PS; McGinnis CD; Michel CR; Marentette JO; Reisdorph R; Roede JR; Fritz KS
    Redox Biol; 2023 Aug; 64():102792. PubMed ID: 37390786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global approaches for protein thiol redox state detection.
    Knoke LR; Leichert LI
    Curr Opin Chem Biol; 2023 Dec; 77():102390. PubMed ID: 37797572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.
    Slade WO; Werth EG; McConnell EW; Alvarez S; Hicks LM
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):631-40. PubMed ID: 25698223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model.
    Day NJ; Zhang T; Gaffrey MJ; Zhao R; Fillmore TL; Moore RJ; Rodney GG; Qian WJ
    Free Radic Biol Med; 2022 Nov; 193(Pt 1):373-384. PubMed ID: 36306991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in purification and separation of posttranslationally modified proteins.
    Černý M; Skalák J; Cerna H; Brzobohatý B
    J Proteomics; 2013 Oct; 92():2-27. PubMed ID: 23777897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review.
    Majewska AM; Mostek A
    Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.