These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37248801)
1. Uncovering the Mechanism of Azepino-Indole Skeleton Formation via Pictet-Spengler Reaction by Strictosidine Synthase: A Quantum Chemical Investigation. Mou M; Zhang C; Zhang S; Chen F; Su H; Sheng X ChemistryOpen; 2023 Jun; 12(6):e202300043. PubMed ID: 37248801 [TBL] [Abstract][Full Text] [Related]
2. 3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis. Stöckigt J; Barleben L; Panjikar S; Loris EA Plant Physiol Biochem; 2008 Mar; 46(3):340-55. PubMed ID: 18280746 [TBL] [Abstract][Full Text] [Related]
3. Proxy-approach in understanding the bisubstrate activity of strictosidine synthases. Nitin K; Rajakumara E Int J Biol Macromol; 2024 Mar; 262(Pt 2):130091. PubMed ID: 38354931 [TBL] [Abstract][Full Text] [Related]
4. Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries. Loris EA; Panjikar S; Ruppert M; Barleben L; Unger M; Schübel H; Stöckigt J Chem Biol; 2007 Sep; 14(9):979-85. PubMed ID: 17884630 [TBL] [Abstract][Full Text] [Related]
5. Binding order and apparent binding affinity in the bisubstrate activity of strictosidine synthase. Kulhar N; Rajakumara E J Biomol Struct Dyn; 2023; 41(24):15634-15646. PubMed ID: 36943789 [TBL] [Abstract][Full Text] [Related]
6. Pictet-Spengler Reaction for the Chemical Synthesis of Strictosidine. Dou Y; Evanno L; Poupon E; Vincent G Methods Mol Biol; 2022; 2505():79-85. PubMed ID: 35732938 [TBL] [Abstract][Full Text] [Related]
7. Total Syntheses of (-)-Strictosidine and Related Indole Alkaloid Glycosides. Sakamoto J; Umeda Y; Rakumitsu K; Sumimoto M; Ishikawa H Angew Chem Int Ed Engl; 2020 Aug; 59(32):13414-13422. PubMed ID: 32364625 [TBL] [Abstract][Full Text] [Related]
8. Substrate specificity of strictosidine synthase. McCoy E; Galan MC; O'Connor SE Bioorg Med Chem Lett; 2006 May; 16(9):2475-8. PubMed ID: 16481164 [TBL] [Abstract][Full Text] [Related]
9. Strictosidine synthase, an indispensable enzyme involved in the biosynthesis of terpenoid indole and β-carboline alkaloids. Cao N; Wang CH Chin J Nat Med; 2021 Aug; 19(8):591-607. PubMed ID: 34419259 [TBL] [Abstract][Full Text] [Related]
10. Inverted Binding of Non-natural Substrates in Strictosidine Synthase Leads to a Switch of Stereochemical Outcome in Enzyme-Catalyzed Pictet-Spengler Reactions. Eger E; Simon A; Sharma M; Yang S; Breukelaar WB; Grogan G; Houk KN; Kroutil W J Am Chem Soc; 2020 Jan; 142(2):792-800. PubMed ID: 31909617 [TBL] [Abstract][Full Text] [Related]
11. A facile chemoenzymatic approach: one-step syntheses of monoterpenoid indole alkaloids. Zou HB; Zhu HJ; Zhang L; Yang LQ; Yu YP; Stöckigt J Chem Asian J; 2010 Nov; 5(11):2400-4. PubMed ID: 20872397 [TBL] [Abstract][Full Text] [Related]
12. Exploring the Chemistry of Spiroindolenines by Mechanistically-Driven Reaction Development: Asymmetric Pictet-Spengler-type Reactions and Beyond. Zheng C; You SL Acc Chem Res; 2020 Apr; 53(4):974-987. PubMed ID: 32275392 [TBL] [Abstract][Full Text] [Related]
13. Alkaloid and iridoid glucosides from Palicourea luxurians (Rubiaceae: Palicoureeae) indicate tryptamine- and tryptophan-iridoid alkaloid formation apart the strictosidine pathway. Kornpointner C; Berger A; Traxler F; Hadžiabdić A; Massar M; Matek J; Brecker L; Schinnerl J Phytochemistry; 2020 May; 173():112296. PubMed ID: 32087436 [TBL] [Abstract][Full Text] [Related]
14. β-Methyltryptamine Provoking the Crucial Role of Strictosidine Synthase Tyr151-OH for Its Stereoselective Pictet-Spengler Reactions to Tryptoline-type Alkaloids. Liu H; Panjikar S; Sheng X; Futamura Y; Zhang C; Shao N; Osada H; Zou H ACS Chem Biol; 2022 Jan; 17(1):187-197. PubMed ID: 34994203 [TBL] [Abstract][Full Text] [Related]
15. Strictosidine: from alkaloid to enzyme to gene. Kutchan TM Phytochemistry; 1993 Feb; 32(3):493-506. PubMed ID: 7763429 [TBL] [Abstract][Full Text] [Related]
16. Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Barleben L; Panjikar S; Ruppert M; Koepke J; Stöckigt J Plant Cell; 2007 Sep; 19(9):2886-97. PubMed ID: 17890378 [TBL] [Abstract][Full Text] [Related]
17. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine. Szabó LF Molecules; 2008 Aug; 13(8):1875-96. PubMed ID: 18794791 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric Synthesis of (R)-1-Alkyl-Substituted Tetrahydro-ß-carbolines Catalyzed by Strictosidine Synthases. Pressnitz D; Fischereder EM; Pletz J; Kofler C; Hammerer L; Hiebler K; Lechner H; Richter N; Eger E; Kroutil W Angew Chem Int Ed Engl; 2018 Aug; 57(33):10683-10687. PubMed ID: 29852524 [TBL] [Abstract][Full Text] [Related]
19. C-H functionalization of 2-alkyl tryptamines: direct assembly of azepino[4,5- Xie K; Shen Z; Cheng P; Dong H; Yu ZX; Zu L Chem Sci; 2024 Aug; 15(32):12732-12738. PubMed ID: 39148802 [TBL] [Abstract][Full Text] [Related]
20. Total Synthesis of (-)-Strictosidine and Interception of Aryne Natural Product Derivatives "Strictosidyne" and "Strictosamidyne". Anthony SM; Tona V; Zou Y; Morrill LA; Billingsley JM; Lim M; Tang Y; Houk KN; Garg NK J Am Chem Soc; 2021 May; 143(19):7471-7479. PubMed ID: 33955226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]