These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37249162)

  • 1. Responsiveness to long days for flowering is reduced in Arabidopsis by yearly variation in growing season temperatures.
    Kinmonth-Schultz H; Sønstebø JH; Croneberger AJ; Johnsen SS; Leder E; Lewandowska-Sabat A; Imaizumi T; Rognli OA; Vinje H; Ward JK; Fjellheim S
    Plant Cell Environ; 2023 Nov; 46(11):3337-3352. PubMed ID: 37249162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana.
    Lee JH; Kim JJ; Kim SH; Cho HJ; Kim J; Ahn JH
    Plant Cell Physiol; 2012 Oct; 53(10):1802-14. PubMed ID: 22960247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled turnover of CONSTANS protein by the HOS1 E3 ligase regulates floral transition at low temperatures.
    Joon Seo P; Jung JH; Park MJ; Lee K; Park CM
    Plant Signal Behav; 2013 Apr; 8(4):e23780. PubMed ID: 23425850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural haplotypes of
    Lutz U; Nussbaumer T; Spannagl M; Diener J; Mayer KF; Schwechheimer C
    Elife; 2017 Mar; 6():. PubMed ID: 28294941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent regulation of flowering by antagonistic FLM variants.
    Posé D; Verhage L; Ott F; Yant L; Mathieu J; Angenent GC; Immink RG; Schmid M
    Nature; 2013 Nov; 503(7476):414-7. PubMed ID: 24067612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M.
    Lutz U; Posé D; Pfeifer M; Gundlach H; Hagmann J; Wang C; Weigel D; Mayer KF; Schmid M; Schwechheimer C
    PLoS Genet; 2015 Oct; 11(10):e1005588. PubMed ID: 26492483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana.
    Burghardt LT; Runcie DE; Wilczek AM; Cooper MD; Roe JL; Welch SM; Schmitt J
    New Phytol; 2016 Apr; 210(2):564-76. PubMed ID: 26681345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis.
    He Y; Doyle MR; Amasino RM
    Genes Dev; 2004 Nov; 18(22):2774-84. PubMed ID: 15520273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana.
    Capovilla G; Symeonidi E; Wu R; Schmid M
    J Exp Bot; 2017 Nov; 68(18):5117-5127. PubMed ID: 29036339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of flowering signals in winter-annual Arabidopsis.
    Michaels SD; Himelblau E; Kim SY; Schomburg FM; Amasino RM
    Plant Physiol; 2005 Jan; 137(1):149-56. PubMed ID: 15618421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana.
    Scortecci K; Michaels SD; Amasino RM
    Plant Mol Biol; 2003 Jul; 52(5):915-22. PubMed ID: 14558654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM.
    Airoldi CA; McKay M; Davies B
    PLoS One; 2015; 10(5):e0126516. PubMed ID: 25955034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat can erase epigenetic marks of vernalization in Arabidopsis.
    Bouché F; Detry N; Périlleux C
    Plant Signal Behav; 2015; 10(3):e990799. PubMed ID: 25648822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana.
    Sanchez-Bermejo E; Balasubramanian S
    Plant Cell Environ; 2016 Jun; 39(6):1353-65. PubMed ID: 26662639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
    Scarcelli N; Kover PX
    Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Seo E; Lee H; Jeon J; Park H; Kim J; Noh YS; Lee I
    Plant Cell; 2009 Oct; 21(10):3185-97. PubMed ID: 19825833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis.
    Sung S; Schmitz RJ; Amasino RM
    Genes Dev; 2006 Dec; 20(23):3244-8. PubMed ID: 17114575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis.
    Ding L; Kim SY; Michaels SD
    Plant Physiol; 2013 Sep; 163(1):243-52. PubMed ID: 23899645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering.
    Wollenberg AC; Strasser B; Cerdán PD; Amasino RM
    Plant Physiol; 2008 Nov; 148(3):1681-94. PubMed ID: 18790998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis.
    Jung JH; Park JH; Lee S; To TK; Kim JM; Seki M; Park CM
    Plant Cell; 2013 Nov; 25(11):4378-90. PubMed ID: 24220632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.