These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37249411)

  • 1. Calibrated transmission and reflection from a multi-qubit microwave package.
    Simbierowicz S; Monarkha VY; von Soosten M; Andresen S; Lake RE
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37249411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular cryogenic interconnects for multi-qubit devices.
    Colless JI; Reilly DJ
    Rev Sci Instrum; 2014 Nov; 85(11):114706. PubMed ID: 25430132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing cryogenic amplifiers with a matched temperature-variable noise source.
    Simbierowicz S; Vesterinen V; Milem J; Lintunen A; Oksanen M; Roschier L; Grönberg L; Hassel J; Gunnarsson D; Lake RE
    Rev Sci Instrum; 2021 Mar; 92(3):034708. PubMed ID: 33820089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control and readout of a superconducting qubit using a photonic link.
    Lecocq F; Quinlan F; Cicak K; Aumentado J; Diddams SA; Teufel JD
    Nature; 2021 Mar; 591(7851):575-579. PubMed ID: 33762768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband sample holder for microwave spectroscopy of superconducting qubits.
    Averkin AS; Karpov A; Shulga K; Glushkov E; Abramov N; Huebner U; Il'ichev E; Ustinov AV
    Rev Sci Instrum; 2014 Oct; 85(10):104702. PubMed ID: 25362429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the microwave to infrared noise photon flux for superconducting quantum systems.
    Danilin S; Barbosa J; Farage M; Zhao Z; Shang X; Burnett J; Ridler N; Li C; Weides M
    EPJ Quantum Technol; 2022; 9(1):1. PubMed ID: 35098151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-port microwave calibration at millikelvin temperatures.
    Ranzani L; Spietz L; Popovic Z; Aumentado J
    Rev Sci Instrum; 2013 Mar; 84(3):034704. PubMed ID: 23556834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CMOS-based cryogenic control of silicon quantum circuits.
    Xue X; Patra B; van Dijk JPG; Samkharadze N; Subramanian S; Corna A; Paquelet Wuetz B; Jeon C; Sheikh F; Juarez-Hernandez E; Esparza BP; Rampurawala H; Carlton B; Ravikumar S; Nieva C; Kim S; Lee HJ; Sammak A; Scappucci G; Veldhorst M; Sebastiano F; Babaie M; Pellerano S; Charbon E; Vandersypen LMK
    Nature; 2021 May; 593(7858):205-210. PubMed ID: 33981049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic multi-qubit entanglement in a quantum network.
    Zhong Y; Chang HS; Bienfait A; Dumur É; Chou MH; Conner CR; Grebel J; Povey RG; Yan H; Schuster DI; Cleland AN
    Nature; 2021 Feb; 590(7847):571-575. PubMed ID: 33627810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-induced cooling of a superconducting qubit.
    Valenzuela SO; Oliver WD; Berns DM; Berggren KK; Levitov LS; Orlando TP
    Science; 2006 Dec; 314(5805):1589-92. PubMed ID: 17158325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ broadband cryogenic calibration for two-port superconducting microwave resonators.
    Yeh JH; Anlage SM
    Rev Sci Instrum; 2013 Mar; 84(3):034706. PubMed ID: 23556836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A broadband microwave Corbino spectrometer at ³He temperatures and high magnetic fields.
    Liu W; Pan L; Armitage NP
    Rev Sci Instrum; 2014 Sep; 85(9):093108. PubMed ID: 25273708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryogenic high-frequency readout and control platform for spin qubits.
    Colless JI; Reilly DJ
    Rev Sci Instrum; 2012 Feb; 83(2):023902. PubMed ID: 22380102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures.
    Kurpiers P; Walter T; Magnard P; Salathe Y; Wallraff A
    EPJ Quantum Technol; 2017; 4(1):8. PubMed ID: 31179200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions.
    Gustavsson S; Zwier O; Bylander J; Yan F; Yoshihara F; Nakamura Y; Orlando TP; Oliver WD
    Phys Rev Lett; 2013 Jan; 110(4):040502. PubMed ID: 25166145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Narrow bandpass cryogenic filter for microwave measurements.
    Ivanov BI; Klimenko DN; Sultanov AN; Il'ichev E; Meyer HG
    Rev Sci Instrum; 2013 May; 84(5):054707. PubMed ID: 23742575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A broadband toolbox for scanning microwave microscopy transmission measurements.
    Lucibello A; Sardi GM; Capoccia G; Proietti E; Marcelli R; Kasper M; Gramse G; Kienberger F
    Rev Sci Instrum; 2016 May; 87(5):053701. PubMed ID: 27250429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational and Experimental Approaches for Determining Scattering Parameters of OPEFB/PLA Composites to Calculate the Absorption and Attenuation Values at Microwave Frequencies.
    Fahad Ahmad A; Aziz SHA; Abbas Z; Mohammad Abdalhadi D; Khamis AM; Aliyu US
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32858790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wideband cryogenic microwave low-noise amplifier.
    Ivanov BI; Volkhin DI; Novikov IL; Pitsun DK; Moskalev DO; Rodionov IA; Il'ichev E; Vostretsov AG
    Beilstein J Nanotechnol; 2020; 11():1484-1491. PubMed ID: 33083196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.